South					
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-1/2 EXAMINATION – WINTER 2021 Subject Code:3110018 Date:22/03/2022					
v		Name:Physics			
Time:10:30 AM TO 01:00 PM Total Marks:					
Instru					
		Attempt all questions.			
		Make suitable assumptions wherever necessary.			
		Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.			
	4.	Simple and non-programmable scientific calculators are anowed.	Marks		
Q.1	(a)	Define absorption, spontaneous emission and stimulated emission for	03		
		bulk semiconductors.			
	(b)	Write a short note on P-N junction diode.	04		
	(c)	Give assumptions of classical free electron theory and discuss its limitations.	07		
		S.			
Q.2	(a)	Find the temperature at which there is 1% probability that a state with	03		
		energy 2eV is occupied. Given that Fermi energy is 1.5 eV.			
	(b)	What is drift and diffusion current in p-n junction diode?	04		
	(c)	Explain the Kronig-Penny model of solids and show that how it	07		
		explains the origin of band gap in solids.			
		OR	. –		
	(c)	Explain intrinsic and extrinsic (N & P type) semiconductors with the	07		
0.0		help of energy band diagram.	0.3		
Q.3	(a)	In an N-type semiconductor, the Fermi level lies 0.3 eV below the	03		
		conduction band at room temperature. If the temperature is increased to			
		330°K, Find the position of Fermi level.	0.4		
	(b)		04		
		that at all temperatures $(T > 0K)$ probability of occupancy of Fermi level is 50%.			
	(a)	Discuss the effect of temperature on the Fermi level in extrinsic (N & P	07		
	(c)	type) semiconductors.	07		
		OR			
Q.3	(a)	Find the concentration of holes and electrons in N-type silicon if the	03		
X	(4)	conductivity is 0.1 Ω -cm ⁻¹ , mobility of electrons is 1300 cm ² /V-s and	00		
		total carrier concentration is 1.5×10^{10} carriers / cm ³ .			
	(b)		04		
	(c)	Explain Meissener's effect in detail and show that for superconductor,	07		
	(•)	$\chi_m = -1.$	0.		
Q.4	(a)	Write a short note on effective mass of electron.	03		
-	(b)	What is mass action law?	04		
		Explain Schottky junction.			
	(c)	Explain Drude model and discuss how it is used for Hall measurements	07		
		and magnetoresistance.			
		OR			
Q.4	(a)	What is an exciton?	03		
		What is DLTS?			
		Define Hall mobility.			

	(b)	What is Fermi level and Fermi energy? What is Photovoltaic Cell?	04
	(c)	Explain four point probe method with diagram for the measurement of resistivity of bulk sample.	07
Q.5	(a) (b) (c)	Explain Fermi Golden rule for transition probability. What is Josephson junction? Write a short note on SQUID. Explain how to measure band gap of the semiconductor using UV-Vis spectroscopy.	03 04 07
Q.5	(a)	OR Calculate the critical current for a superconducting wire of lead having a diameter of 1mm at 4.2 K. Critical temperature for lead is 7.18 K and $H_c(0) = 6.5 \times 10^4 \text{ A/m}.$	03
	(b) (c)		04 07
		culoueston Papers. Or	
		6	