\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-I \& II(NEW)EXAMINATION - SUMMER 2022

Subject Code:3110014
Date:02-08-2022
Subject Name:Mathematics - 1
Time:10:30 AM TO 01:30 PM
Total Marks:70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Is $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ convergent for $p>1$? Justify your answer.
(b) (1) Find $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{(x-a)^{2}}$
(2) Is $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} \quad$ convergent? Justify your answer.
(c) (1) Find the length of curve

$$
f(x)=\frac{x^{3}}{12}+\frac{1}{x}, 1 \leq x \leq 4
$$

(2) Prove that

$$
\begin{equation*}
\operatorname{Gamma}(n)=(n-1) \text { Gamma }(n-1) \tag{03}
\end{equation*}
$$

Q. 2 (a)

Investigate the convergence of $\sum_{1}^{\infty} \frac{n^{2}}{7^{n}}$.
(b) Investigate the convergence of $\sum_{n=1}^{\infty} \frac{2^{n}(n!)^{2}}{(2 n)!}$
(c) Find Fourier series of $f(x)=x^{2},-\pi<x<\pi$.

OR
(c) Find Fourier series of $f(x)=x,-1<x<0$ 07

$$
=2, \quad 0<x<1
$$

Q. 3 (a) Find the derivative of $f(x, y)=x^{2}+x y+y^{2}$ in the direction $\hat{i}+\hat{j}$ at 03 $P(1,1)$.
(b) Find the tangent plane of $z=e^{x} \cos y$ at $P(0,0,0)$. 04
(c) Find local extreme values of $f(x, y)=x y-x^{2}-y^{2}-x$.07 OR
Q. 3 (a) Explain second derivative test for local extreme values. 03
(b) Let $f=\ln r$, where $\bar{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\bar{r}|$. Find grad f.
(c) Determine the minimum value of $x^{2} y z^{2}$ subject to the condition $x+y+2 z=5$ using method of Lagrange multipliers.
Q. 4 (a) Evaluate $\int_{y=0}^{1} \int_{x=0}^{2} \frac{1}{\sqrt{4-x^{2}} \sqrt{1-y^{2}}} d x d y$.
(b)

Evaluate the integral $\int_{0}^{2} \int_{x / 2}^{1} \frac{1}{3} e^{y^{2}} d y d x$
by change of order.
(c) (1) Find the area of the region covered by $x=1, x=4, y=0$ and $y=\sqrt{x}$.
(2) Evaluate $\int_{x=0}^{1} \int_{y=0}^{x^{1 / 4}} \int_{z=0}^{y^{2}} \sqrt{z} d z d y d x$

OR

Q. 4 (a) Evaluate $\iint_{R} x y d A$ where R is the region bounded by x axis, the ordinate $x=2 a$ and the curve $x^{2}=4 a y$.
(b) Evaluate the integral $\int_{y=0}^{1} \int_{x=0}^{\cos ^{-1} y} e^{\sin x} d x d y \quad$ by change of order.
(c) (1) Change in to polar coordinates then solve $\int_{0}^{2} \int_{0}^{\sqrt{-x^{2}}} e^{-\left(x^{2}+y^{2}\right)} d y d x$.
(2) Let $x+y=u$ and $y=u v$ are given transformations. Find 03 Jacobian for change of variables.
Q. 5 (a)

Find characteristic equation of $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & 1 \\ 2 & 0 & 1\end{array}\right]$. term.
(c) Solve
$x+y+w=1,2 x+z+w=3,2 y+z+2 w=2$.
Q. 5 (a) Show that give matrix, $A=\left[\begin{array}{cc}0 & 1 \\ -2 & -1\end{array}\right]$ satisfies its Characteristic equation.
(b) Show that $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$ converges.
(c)

Show that $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ -2 & -1 & 2 \\ -4 & -8 & 7\end{array}\right] \quad$ is diagonalizable. Find the matrix of eigen vectors and diagonal matrix.

