GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-I & II(NEW)EXAMINATION – SUMMER 2022 Subject Code:3110014 Date:02-08-2022			
Subject Name:Mathematics - 1 Time:10:30 AM TO 01:30 PM Total Mark Instructions:			ks:70
	1. 2. 3. 4.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
Q.1	(a)	Is $\sum_{n=1}^{\infty} \frac{1}{n^p}$ convergent for $p > 1$? Justify your answer.	Marks 03
	(b)	(1) Find $\lim_{x \to a} \frac{\sin x - \sin a}{(x-a)^2}$	02
		(2) Is $\int_{-\infty}^{\infty} \frac{\sin^2 x}{r^2}$ convergent? Justify your answer,	02
	(c)	(1) Find the length of curve $f(x) = \frac{x^3}{12} + \frac{1}{x}, \ 1 \le x \le 4.$	04
		(2) Prove that Gamma(n) = (n-1) Gamma(n-1).	03
Q.2	(a)	Investigate the convergence of $\sum_{1}^{\infty} \frac{n^2}{7^n}$.	03
	(b)	Investigate the convergence of $\sum_{n=1}^{\infty} \frac{2^n (n!)^2}{(2n)!}$	04
	(c)	Find Fourier series of $f(x) = x^2$, $-\pi < x < \pi$.	07
	(c)	Find Fourier series of $f(x) = x, -1 < x < 0$ = 2, $0 < x < 1$.	07
Q.3	(a)	Find the derivative of $f(x, y) = x^2 + xy + y^2$ in the direction $\hat{i} + \hat{j}$ at $P(1,1)$.	03
	(b)	Find the tangent plane of $z = e^x \cos y$ at $P(0,0,0)$.	04
	(c)	Find local extreme values of $f(x, y) = xy - x^2 - y^2 - x$.	07
03	(a)	OR Explain second derivative test for local extreme values	03
Q.3	(a) (b)	Let $f = \ln r$ where $\bar{r} = x \hat{i} + y \hat{j} + z \hat{k}$ and $r = \bar{r} $ Find and f	03
	(c)	Determine the minimum value of $r^2 vz^2$ subject to the condition	07
		x + y + 2z = 5 using method of Lagrange multipliers.	- *
Q.4	(a)	Evaluate $\int_{y=0}^{1} \int_{x=0}^{2} \frac{1}{\sqrt{4-x^2}\sqrt{1-y^2}} dxdy$.	03

1

(b) Evaluate the integral
$$\int_{0}^{2} \int_{x/2}^{1} \frac{1}{3} e^{y^2} dy dx$$
 04

by change of order.

(c) (1) Find the area of the region covered by
$$x = 1$$
, $x = 4$, $y = 0$ and $y = \sqrt{x}$.

(2) Evaluate
$$\int_{x=0}^{1} \int_{y=0}^{x^{1/4}} \int_{z=0}^{y^2} \sqrt{z} \, dz \, dy \, dx$$
 OR

Q.4 (a) Evaluate $\iint_{R} xy \, dA$ where *R* is the region bounded by *x* axis, the ordinate x = 2a and the curve $x^2 = 4ay$.

(b) Evaluate the integral
$$\int_{y=0}^{1} \int_{x=0}^{\cos^{-1} y} e^{\sin x} dx dy$$
 by change of order.
(c) $2\sqrt[2]{4-x^2}$ (1) 04

(1) Change in to polar coordinates then solve
$$\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{-(x^{2}+y^{2})} dy dx.$$

(2) Let x + y = u and y = uv are given transformations. Find 03 Jacobian for change of variables.

Q.5 (a)
Find characteristic equation of
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$
.

(b) Find Maclaurin's series for f(x) = e^{2x} sinh x and show at least up to x⁴
(c) Solve
07

Solve

$$x + y + w = 1, \ 2x + z + w = 3, \ 2y + z + 2w = 2.$$

Q.5 (a)
Show that give matrix
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix}$$
 satisfies its Characteristic 03
equation.

(b) Show that
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$
 converges.
(c) $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

Show that
$$A = \begin{bmatrix} 0 & 1 & 0 \\ -2 & -1 & 2 \\ -4 & -8 & 7 \end{bmatrix}$$
 is diagonalizable. Find the matrix of

eigen vectors and diagonal matrix.

04

07