Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-I & II(NEW) EXAMINATION – SUMMER 2023

Subject Code:3110015 Date:07-08-2023 **Subject Name: Mathematics - 2**

Time:10:30 AM TO 01:30 PM

Total Marks: 70

Instructions:

Q.2

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Marks

0.1 (a) Find the directional derivative of $f(x, y, z) = x^2 + 5y^2 + 3z^2$

04

03

at point (1,1,1) in the direction 3i+4j+5k.

(b) A vector field is given by $F = 3x^2yz i + x^3z j + x^3y k$, show that f is irrotational and find the scalar \emptyset such that $F = \nabla \emptyset$.

(c) Verify the Greens theorem for $F = x^2i + xy^2j$, along the square bounded by

07

x = 0, x = 1, y = 0 and y = 1

(a) Discuss about ordinary point, singular point, regular singular point 03

- and irregular singular point of differential equation $(x^2 1)y'' +$ $3xy + 5x^2y = 0$ (b) Express $f(x) = x^3 + 2x^2 + 3x - 1$ in terms of Legendre's
 - 04
 - (c) Find a power series solution of y'' 25y = 0 near an ordinary 07 point x=0.

Prove that $Pn(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$

07 03

Find the Laplace transform of

polynomial.

 $e^{3t}t^{5}$ (ii) t cos3t (iii)($\sin^{2}5t$)/t (i)

04

Find the Inverse Laplace transform of

 $\frac{1}{(s-1)(s-2)(s-3)} \text{ (ii) } \frac{1}{s^4 - 9s^2}$ $\text{(iii) } \frac{s+1}{s^2 + 2s + 10} \text{ (iv)}$ (iv) $tan^{-1}(\frac{s}{\lambda})$

Solve the initial value problem using Laplace transformation y'' – 07 $5v' - 6v = e^{3t}$ with

y(0) = 3 and y'(0) = 2

Q.3 Find the Laplace transform of

03

 $e^{4t}u(t-2)$ (ii) $(t^2+1)u(t-1)$ (iii) $sin3t u(t - \pi)$

04

(b) Using convolution theorem find the Inverse Laplace transform of

 $(s^2-4)(s^2-9)$ (c) Find the Fourier integral of

07

$$f(x) = \begin{cases} 0, & |x| < 5 \\ 5, & |x| > 5 \end{cases}$$

Q.4 (a) Solve the Differential equation
$$e^{x}\cos y \, dx - e^{x}\sin y \, dy = 0$$

(b) Solve
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$$
, $y(0) = 1$, $y'(0) = 2$

(i)
$$\frac{dy}{dx} + y \tan x = \sin 2x, \quad y(0) = 2$$

(ii) $(x^3 + y^3)dx - xy^2dy = 0$

(ii)
$$(x^3 + y^3)dx - xy^2dy = 0$$

Q.4 (a) Solve
$$(x^2 - y^2)dx + xydy = 0$$

Q.4 (a) Solve
$$(x^2 - y^2)dx + xydy = 0$$

(b) Solve $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 14y = 0$, $y(0) = 3$, $y'(0) = 1$

(ii)
$$n^2x^2 = x^2 + n^2$$

Q.5 (a) Solve
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = e^{-4x} - 12x$$

(c) Solve
$$(i) \quad (y-px)(p^2+1) = tan^{-1}p$$

$$(ii) \quad p^2x^2 = x^2 + p^2$$
Q.5 (a) Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 12y = e^{-4x} - 12x$
(b) Using method of undetermined coefficient obtain the solution of $\frac{d^2y}{dx^2} + 4y = sinx$

(1)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = x^2 e^x$$

(ii) $\frac{x^2 d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = \cos(\log x)$

(a) Solve Q.5

$$\frac{d^4y}{dx^4} + 8\frac{d^2y}{dx^2} + 16y = \cos 2x$$

- (b) Using method of undetermined coefficient 04 $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = x^2$ (c) (i) Using method of variation of parameters find the solution of
- 07 differential equation $\frac{d^2y}{dx^2} + 16y = \cot 4x$
 - the solution of difference $\frac{x^2 d^2 y}{dx^2} 6x \frac{dy}{dx} + 6y = x^2 + \frac{1}{x^2}$ (ii) Find differential equation
