Seat No.:	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

Subject Code: 3130704 Date: 3/12/2019

Subject Name: Digital Fundamentals

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS		
Q.1*	(a)	Do as Directed	03		
		1. Given that $(16)_{10} = (100)_x$. Find the value of x.			
		2. Add (6E) ₁₆ and (C5) ₁₆ .			
		3. $(1011011101101110)_2 = (\underline{})_8 = (\underline{})_{16}$.			
	(b)	State and explain De Morgan's theorems with truth tables.	04		
	(c)	Implement AND, OR, & EX-OR gates using NAND & NOR gates.	07		
			0.0		
Q.2	(a)	Express the Boolean function $F = A + B'C$ in a sum of minterms.	03		
	(b) (c)	Reduce the expression $F = A [B + C'(AB + AC')']$ Simplify the following Boolean function by using the tabulation method.	04 07		
	(C)	F (A, B, C, D) = Σ m (0, 1, 2, 8, 10, 11, 14, 15)	U/		
	\mathbf{OR}				
	(c)	Using D & E as the MEV, Reduce	07		
	, ,	F = A'B'C' + A'B'CD + A'BCE' + A'BC'E + AB'C + ABC + ABC'D'.			
Q.3	(a)	Simplify the Boolean function	03		
		$F(w, x, y, z) = \Sigma m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$			
	(b)	Design 1 - bit Magnitude Comparator.	04		
	(c)	Design a full adder and realize full adder using 3X8 Decoder and 2 OR gates.	07		
Q.3	(a)	OR Simplify the Boolean function F = A'B'C' + B'CD' + A'BCD' + AB'C'	03		
Q.S	(a) (b)	Explain 4 – bit parallel adder.	03 04		
	(c)	Implement the following function using 8X1 MUX	07		
	(0)	$F(A, B, C, D) = \sum m(0, 1, 3, 4, 8, 9, 15)$	0.		
Q.4	(a)	Explain SR flip-flop using characteristic table & characteristic equation.	03		
	(b)	Explain the working of SISO shift register.	04		
	(c)	Design a counter with the following binary sequence: 0, 1, 3, 7, 6, 4 and	07		
		repeat. Use T – flip-flops.			
0.4		OR	02		
Q.4	(a) (b)	What is the race around condition in JK flip-flop? Design 4-bit Ring counter using D flip-flip.	03 04		
	(c)	Design JK flip-flip using D flip-flip.	07		
Q.5	(a)	Explain the specification of D/A converter.	03		
Q.O	(b)	Explain R-2R ladder type D/A converter,	04		
	(c)	Explain Successive Approximation type A/D converter.	07		
	OR				
Q.5	(a)	Explain classification of Memories.	03		
	(b)	Explain the types of ROM.	04		
	(c)	A combinational circuit is defined by the function	07		
		$F_1(A, B, C_1) = \sum m (4, 5, 7)$ $F_2(A, B, C_2) = \sum m (3, 5, 7)$			
		Implement the circuit with a PLA having 3 inputs, 3 product term & 2 outputs.			