GUJARAT TECHNOLOGICAL UNIVERSITY			
BE - SEMESTER-III(NEW) EXAMINATION – WINTER 2022			
Subject Code: 5150/04 Date: 27-02-2025			
Subject Name: Digital Fundamentals			
Time:02:30 PM TO 05:00 PM Total Marks: /			s:70
Instructions:			
	1. 2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
			Marks
0.4			
Q.1	(a) (b)	Implement NOR, AND, & OR gates using NAND gates only Write the boolean expression for the logic diagram given below and	03
	(0)	simplify it as much as possible and draw the logica digarm that implements	04
		the simplified expression	
		в	
		в	
	(-)		07
	(C)	1 Convert (75 75) $_{10} = ($) $_{8} = ($)16	07
		2. Convert $(101.10)_{16} = (-)_8$	
		3. Add $(17)_{10}$ and $(-25)_{10}$ using 8-bit 2's complement	
Q.2	(a)	Explain SR flip-flop using characteristic table & characteristic equation	03
	(b)	Explain 4-bit parallel binary adder with neat and clean diagram	04
	(c)	Obtain the set of prime implicants for Function $F=$	07
		$\sum m(1,2,3,5,6,7,8,9,12,13,15)$	
	(\mathbf{c})	A combinational logic circuit is defined by the functions:	07
	(0)	$F1 = \Sigma (0, 1, 2, 4)$ and $F2 = \Sigma (0, 5, 6, 7)$.	07
		Implement the circuit with a PLA having three inputs, four product terms	
		and two outputs.	
Q.3	(a)	Differentiate synchronous counter and asynchronous counter	03
	(b)	Explain BCD adder using two 4-bit adder IC and a correction -detector	04
	(c)	Do the conversion of JK flip flop to T flip flop and D flip flop to JK	07
		OR	57
Q.3	(a)	Design 4 X 16 decoder using two 3 X 8 decoders	03
	(b)	List and explain in detail Binary codes with example	04
	(c)	Design mod-6 asynchronous counter using T flip flop	07
04	(a)	Reduce the expression Σ (2, 3, 6,7,8,10,11,14) using K-man	03
Y.4	(a)	$\frac{1}{2} (2, 3, 0, 7, 0, 10, 11, 14) \text{ using K-map}$	UJ

- (b) Do as directed:
 - 1. Add 25+17 in BCD
 - 2. Add 37 +28 in XS-3
- With a neat block diagram explain the function of encoder. Explain priority (c) encoder?

OR

- Explain R-2R ladder type D/A converter Q.4 (a)
 - Implement the following Boolean functions with a 3 x 1 multiplexer F (w, **(b)** x, y, z = Σ (2, 3, 5, 6, 11, 14, 15)
 - Design Combinational circuit for Binary to Xs-3 conversion (c)
- **O.5** (a) Compare TTL, ECL, & CMOS logic families.
 - (b) Draw truth table of 2-bit digital comparator
 - (c) List out various commonly used D/A converters. Draw & explain any one 07 D/A converter.

OR

- (a) A combinational logic circuit is defined by the functions: 03 Q.5 $F1 = \Sigma (0,1,2,5,7)$ and $F2 = \Sigma (1, 2,4, 6)$. Implement the circuit with a PROM 04
 - (b) Explain types of shift-register and their application
 - (c) List out various commonly used A/D converters. Draw & explain any one 07 A/D converter

04

07

03

04

07

03

04