\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER- III(NEW) EXAMINATION - WINTER 2022

Subject Code:3130704
Date:27-02-2023

Subject Name:Digital Fundamentals

Time:02:30 PM TO 05:00 PM
Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Implement NOR, AND, \& OR gates using NAND gates only
(b) Wrtite the boolean expression for the logic diagram given below and simplify it as much as possible and draw the logica digarm that implements the simplified expression

(c) Do as directed:
5. Convert $(75.75)_{10}=\left(_\right.$_ $) 8=\left(_\right) 16$
6. Convert $(101.10)_{16}=\left(_\right)_{8}$
7. Add $(17)_{10}$ and $(-25)_{10}$ using 8 -bit 2 's complement
Q. 2 (a) Explain SR flip-flop using characteristic table \& characteristic equation 03
(b) Explain 4-bit parallel binary adder with neat and clean diagram

04
(c) Obtain the set of prime implicants for Function $\mathrm{F}=$ 07
$\sum \mathrm{m}(1,2,3,5,6,7,8,9,12,13,15)$

> OR
(c) A combinational logic circuit is defined by the functions:
$F 1=\Sigma(0,1,2,4)$ and $F 2=\Sigma(0,5,6,7)$.
Implement the circuit with a PLA having three inputs, four product terms and two outputs.
Q. 3 (a) Differentiate synchronous counter and asynchronous counter 03
(b) Explain BCD adder using two 4-bit adder IC and a correction -detector 04 circuit
(c) Do the conversion of JK flip flop to T flip flop and D flip flop to JK 07

OR

Q. 3 (a) Design 4×16 decoder using two 3×8 decoders 03
(b) List and explain in detail Binary codes with example 04
(c) Design mod-6 asynchronous counter using T flip flop 07
Q. 4 (a) Reduce the expression $\Sigma(2,3,6,7,8,10,11,14)$ using K-map 03
(b) Do as directed: 04

1. Add $25+17$ in BCD
2. Add $37+28$ in XS- 3(c) With a neat block diagram explain the function of encoder. Explain priorityencoder?
OR
Q. 4 (a) Explain R-2R ladder type D/A converter 03
(b) Implement the following Boolean functions with a 3×1 multiplexer F (w , 04
$\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(2,3,5,6,11,14,15)$(c) Design Combinational circuit for Binary to $\mathrm{Xs}-3$ conversion07
Q. 5 (a) Compare TTL, ECL, \& CMOS logic families. 03
(b) Draw truth table of 2-bit digital comparator 04
(c) List out various commonly used D/A converters. Draw \& explain any one 07 D/A converter.
OR
Q. 5 (a) A combinational logic circuit is defined by the functions: 03
$\mathrm{F} 1=\Sigma(0,1,2,5,7)$ and $\mathrm{F} 2=\Sigma(1,2,4,6)$. Implement the circuit with aPROM
(b) Explain types of shift-register and their application 04
(c) List out various commonly used A/D converters. Draw \& explain any one 07A/D converter
