\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-III(NEW) EXAMINATION - SUMMER 2023Date:01-08-2023
Subject Name:Digital FundamentalsTime:02:30 PM TO 05:00 PM

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Define the logic family properties:
(i) fan in (ii) propagation delay (iii) power dissipation
(b) Convert the following number to the given base:04
(i) $(62)_{10}=(?)_{2}=(?)_{8}$ (ii) $(\mathrm{AFB})_{16}=(?)_{2}=(?)_{8}$
(c) Why NAND and NOR gates are called universal gates? 07
Explain with appropriate example.
Q. 2 (a) Explain the half subtractor with logic circuit. 03
(b) Minimized the boolean expression using K-map 04
$f(A, B, C, D)=\sum m(0,1,5,6,7,8,9)+d(10,11,12,13,14$,15)
(c) Design BCD to excess- 3 converter. 07
(c) Design a circuit which compare two binary number whether 07 $A>B, A=B$ or $A<B$.
Q. 3 (a) Draw the circuit of a J-K flip-flop. 03
(b) Describe the operation of a shift register with suitable 04 diagram.
(c) Design the four bit Johnson counter and explain the 07 operation.
OR
Q. 3 (a) Explain different methods of Triggering of flip-flop. 03
(b) What are qualitative differences between parallel loading 04 and serial loading in shift registers?
(c) Design a 3 bit synchronous counter using JK flip flop. 07
Q. 4 (a) How can we describe the resolution of a D/A converter? 03
(b) A 10-bit D/A converter provides an analog output which 04 has a maximum value of 10.23 volts. Find the resolution of this D/A converter.
(c) Explain the working of R-2R ladder type D/A converter. 07
OR
Q. 4 (a) Explain the types of A / D convertors. 03
(b) A 10-bit D/A converter has a step-size of 10 mV . Determine 04the full-scale output voltage and the percentage resolution.
(c) Describe the successive approximation A/D conversion principle with the neat diagram, explain this type of A/D converter.
Q. 5 (a) Draw and explain the structure of a RAM cell.
(b) Implement using PLA
$f_{1}=\sum \mathrm{m}(0,3,4,7)$
$f_{2}=\sum \mathrm{m}(3,5,6,7)$
(c) Discuss in brief semiconductor memory organization and its operation.

OR

Q. 5 (a) Compare the SRAMs and DRAMs.
(b) Implement the following Boolean expressions using a PROM.
$f_{1}(x 2, x 1, x 0)=\operatorname{\sum m}(0,1,2,5,7)$
$f_{2}(x 2, x 1, x 0)=\sum m(1,2,4,6)$
(c) What is a programmable LOGIC Array (PLA)? Describe with a logic diagram the principle of operation of a PLA. What are its advantages?

