Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject Code: 3141601 Date:04/11/2020

Subject Name: Operating System and Virtualization

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Write Various Process State.	03
	(b)	Write about Process Control Block.	04
	(c)	Write Various Operating System Services.	07
Q.2	(a)	What is the requirement to solve Critical Section Problem?	03
	(b)	Write about Priority Inversion Problem.	04
	(c)	Write various multithreading models.	07
		OR	
	(c)	Explain VMware.	07
Q.3	(a)	Discuss preemptive scheduling.	03
	(b)	Write benefits of Virtual Machines.	04
	(c)	Consider the following set of processes with the length of the CPU burst given in milliseconds:	07

<u>Process</u>	Burst Time	Priority
P1	10	3
P2	1	1
P3	2	3
P4	1	4
P5	5	2

The processes are assumed to have arrived in the order P1,P2,P3,P4,P5 all at time 0.

- a.) Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SF, nonpreemptive priority(a smaller priority number implies a higher priority), and RR(quantum=1 millisecond).
- b.) What is the turnaround time and Waiting time of each process for each of the scheduling algorithms in part a?
- c.) What is the average turnaround time and waiting time of each process for each of the scheduling algorithms in part a?

OR

	(b)	Write necessary conditions for arise of Deadlock.	04
	(c)	Explain Dining-philosophers Solution Using Monitors.	07
Q.4	(a)	How logical Address is mapped to physical address. Explain	03
		with diagram.	
	(b)	Discuss Demand Paging.	04
	(c)	Write Banker's Algorithm.	07
		OR	
Q.4	(a)	Explain Fragmentation.	03
	(b)	Write about TLB.	04
	(c)	Write Second Chance LRU approximation page replacement	07
		algorithm in detail. Also write enhanced LRU approximation	
0.5	(a)	algorithm.	02
Q.5	(a)	Write about RAID level 0 and RAID level 1.	03
	(b)		04
	(c)	Consider the following page reference string: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1	07
		How many page faults would occur for following page	
		replacement algorithm, considering 3 frames and 4 frames.	
		i) FIFO	
		ii) LRU	
		iii) Optimal	
0.5	(-)	Write chaut I/O huffering	02
Q.5	(a) (b)	Write about I/O buffering. Write about RAID level 4.	03 04
	(c)	Suppose that a disk drive has 200 cylinders. Numbered 0 to 199.	07
	(C)	The drive is currently serving at cylinder 53 and previous request	07
		was at cylinder 43. The queue of pending requests in FIFO order	
		is	
		98, 183, 37, 122, 14, 124, 65, 67	
		Starting from the current head position what is the total distance	
		(in cylinders) that the disk arm moves to satisfy all the pending	
		requests for each of following disk scheduling algorithms. a) FCFS	
		b) SSTF	
		c) SCAN	
		d) LOOK	
		e) C-SCAN	
		f) C-LOOK	
