Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2023

Subj	ect (Code:3141601 Date:11-01-2024					
•		Name: Operating System and Virtualization					
		0:30 AM TO 01:00 PM Total Marks:70)				
Instru	1.	Attempt all questions.					
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.					
	4.	Simple and non-programmable scientific calculators are allowed.					
			M AR				
			KS				
Q.1	(a)	1	03				
	(b)	List types of OS structure and Differentiate between Monolithic and Microkernel.	04				
	(c)	What is system call? Explain steps for system call execution with neat diagram.					
Q.2	(a)	What is PCB? Discuss its major fields.	03				
	(b) (c)	Explain process states model along with transition by a labelled diagram. What do you mean by scheduling? Discuss in brief types of scheduling and	04 07				
	(-)	kind of schedulers too.					
	()	OR OR	0.7				
	(c)	Consider Five Processes P1 to P5 arrived at same time. They have estimated running time 10,2,6,8 and 4 seconds, respectively. Their Priorities are 3,2,5,4	07				
		and 1, respectively with 5 being highest Priority. Find the average turnaround					
		time and average waiting time for Round Robin (q=3) and Priority Scheduling					
		algorithm.					
Q.3	(a)	Give the functions of following UNIX commands: ps, fork, join	03				
	(b)		04				
	(c)	deadlock can be prevented? What is Semaphore? Give the implementation of Bounded Buffer (Producer	07				
	(0)	Consumer) Problem using Semaphore.	0.				
0.2	()	OR	0.2				
Q.3	(a) (b)	Explain Race condition, mutual exclusion and critical region. Explain the use of Banker's Algorithm for deadlock avoidance.	03 04				
	(c)	What is Critical section Problem and list the requirements to solve it. Write	07				
		Peterson's Solution for the same.					
Q.4	(a)	Give difference between Internal and External Fragmentation.	03				
Ų.T	(b)		04				
	(c)	What is Paging? Explain paging mechanism in MMU with example OR	07				
Q.4	(a)		03				
		What is Buffering? Why is it required in I/O handling?	04				
	(c)	Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page frame. Find number of page fault using Optimal Page replacement and Least	07				
		Recently Used algorithm					
0.5	(=)	Evaloin Davigo controller in brief	0.2				
Q.5	(a) (b)	1	03 04				

(c) Define seek time and rotational latency. Assume that a disk drive has 200 cylinders, numbered 0 to 199. The drive is currently serving a request at cylinder 100. The queue of pending requests is 23, 89, 132, 42, 189.

Calculate seek time for FCFS and SSTF disk scheduling algorithm.

OR

Q.5	(a)	What is	RAID?	Explain	in	brief	•
V.	(u <i>)</i>	VV IIat IS	IM IID.	LAPIGIII	111	ULICI	

(b) Explain memory management with bitmaps.

(c) Explain virtual machine and virtualization concepts in brief.

07

03

04

07