\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-V (NEW) EXAMINATION - WINTER 2020
 Subject Code:3151605
 Date:27/01/2021
 Subject Name:Formal Language and Automata Theory Time:10:30 AM TO 12:30 PM
 Total Marks: 56
 Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

MARKS

Q. 1 (a) Define DFA, NFA and NFA- Λ.
(b) Explain Addition, Multiplication, and Subtraction function for Primitive Recursive Functions.
(c) Draw a Turing Machine(TM) to accept Even and odd Palindromes over \{a,b\}.
Q. 2 (a) Define the pumping lemma for context free language. Using Pumping Lemma Prove that given Language is not CFL.

$$
\mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 0^{\mathrm{k}} \mid \mathrm{k}>\mathrm{i}+\mathrm{j}\right\}
$$

(b) Design and draw a deterministic PDA accepting "Balanced strings of Brackets" which are accepted by following CFG.

$$
\mathrm{S} \rightarrow \mathrm{SS}|[\mathrm{~S}]|\{\mathrm{S}\} \mid \Lambda
$$

(c) Convert the following NFA - Λ into its equivalent DFA that accepts the same language.

Q. 3 (a) Write Regular Expression and Valid String for the following
a) The Language of all strings Containing both 11 and 010 as Substring.
b) The Language of all strings of length 6 or Less.
(b) Find context free grammar for the following language 04
$L=\left\{a^{i} b^{j} c^{k} \mid i=j+k\right\}$
(c) Write a short note on Universal Turing Machine. 07
Q. 4 (a) Consider following grammar: 03
$\mathrm{S} \rightarrow \mathrm{ASB} \mid \Lambda$
$\mathrm{A} \rightarrow \mathrm{aAS} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{SbS}|\mathrm{A}| \mathrm{bb}$
a) Eliminate useless symbols, if any.
b) Eliminate Λ productions
(b) Draw F.A. and Transition Table for following.
c) The Language of all strings with 00 is not a Substring.
d) The Language of all strings end with 01.
(c) Write a Turing Machine to copy strings.
Q. 5 (a) Define: Context-Free Grammars, Chomsky Normal Form and Pushdown 03 Automata.
(b) Calculate following:

1) $\delta^{*}\left(q_{0}, \Lambda\right)$
2) $\delta^{*}\left(q_{0}, 0\right)$
3) $\delta^{*}\left(\mathrm{q}_{0}, 01\right)$
4) $\delta^{*}\left(q_{0}, 010\right)$

(c) Given the context-free grammar G, find a CFG G' in Chomsky Normal Form generating $L(G)-\{\wedge\}$.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AACD}|\mathrm{ACD}| \mathrm{AAC}|\mathrm{CD}| \mathrm{AC} \mid \mathrm{C} \\
& \mathrm{~A} \rightarrow \mathrm{aAb} \mid \mathrm{ab} \\
& \mathrm{C} \rightarrow \mathrm{aC} \mid \mathrm{a} \\
& \mathrm{D} \rightarrow \mathrm{aDa}|\mathrm{bDb}| \mathrm{aa} \mid \mathrm{bb}
\end{aligned}
$$

Q. 6 (a) Draw F.A. and Transition Table for following.
($a+b$)*baaa.
(b) Convert the given NFA to DFA

(c) Prove that the following CFG is Ambiguous.

$$
S \rightarrow S+S|S * S|(S) \mid a
$$

Write the unambiguous CFG for the above grammar. Draw parse tree for string $a+a * a$
Q. 7 (a) What is Initial Functions? 03
(b) Find a minimum-state FA for the following FA

(c) For the PDA, ($\{\mathrm{q} 0, \mathrm{q} 1\},\{0,1\},\{0,1, \mathrm{z} 0\}, \delta, \mathrm{q} 0, \mathrm{z} 0, \phi)$,
where δ is
$\delta(\mathrm{q} 0, \varepsilon, \mathrm{z} 0)=\{(\mathrm{q} 1, \varepsilon)\}$
$\delta(\mathrm{q} 0,0, \mathrm{z} 0)=\{(\mathrm{q} 0,0 \mathrm{z} 0)\}$
$\delta(\mathrm{q} 0,0,0)=\{(\mathrm{q} 0,00)\}$
$\delta(\mathrm{q} 0,1,0)=\{(\mathrm{q} 0,10)\}$
$\delta(\mathrm{q} 0,1,1)=\{(\mathrm{q} 0,11)\}$
$\delta(\mathrm{q} 0,0,1)=\{(\mathrm{q} 1, \varepsilon)\}$
$\delta(\mathrm{q} 1,0,1)=\{(\mathrm{q} 1, \varepsilon)\}$
$\delta(\mathrm{q} 1,0,0)=\{(\mathrm{q} 1, \varepsilon)\}$
$\delta(\mathrm{q} 1, \varepsilon, \mathrm{z} 0)=\{(\mathrm{q} 1, \varepsilon)\}$
Obtain CFG accepted by the above PDA.
Q. 8 (a) What is Primitive Recursive Functions? 03
(b) Define Pumping Lemma for Regular Language. Using Pumping Lemma Prove that given Language is not regular Language.

$$
\mathrm{L}=\left\{0^{\mathrm{i}} 1^{\mathrm{j}} 0^{\mathrm{k}} \mid \mathrm{k}>\mathrm{i}+\mathrm{j}\right\} .
$$

(c) For the language $\mathrm{L}=\left\{\mathrm{xcx}^{\mathrm{r}} / \mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ design a PDA(Push Down Automata) and trace it for string "bacab"

