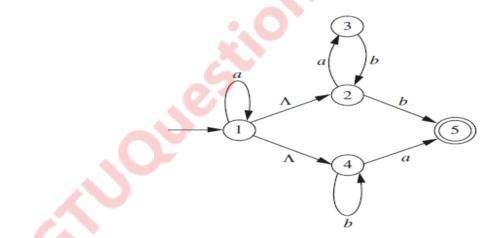
Enrolment	No
-----------	----

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER–V (NEW) EXAMINATION – WINTER 2020 ct Code:3151605 Date:27/01/2021

Subject Code:3151605

Subject Name:Formal Language and Automata Theory Time:10:30 AM TO 12:30 PM


Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS 03

- **Q.1** (a) Define DFA, NFA and NFA- Λ .
 - (b) Explain Addition, Multiplication, and Subtraction function for Primitive 04 Recursive Functions.
 - (c) Draw a Turing Machine(TM) to accept Even and odd Palindromes over **07** {a,b}.
- Q.2 (a) Define the pumping lemma for context free language. Using Pumping 03 Lemma Prove that given Language is not CFL. $L=\{0^{i} 1^{j} 0^{k} | k > i+j\}.$
 - (b) Design and draw a deterministic PDA accepting "Balanced strings of 04 Brackets" which are accepted by following CFG.
 S → SS | [S] | {S} | Λ
 - (c) Convert the following NFA A into its equivalent DFA that accepts the 07 same language.

Q.3	(a)	Write Regular Expression and Valid String for the following	03
		a) The Language of all strings Containing both 11 and 010 as Substring.	
		b) The Language of all strings of length 6 or Less.	
	(b)	Find context free grammar for the following language	04
		$L = \{a^{i} b^{j} c^{k} i = j + k\}$	
	(c)	Write a short note on Universal Turing Machine.	07
Q.4	(a)	Consider following grammar:	03
-		$S \rightarrow ASB \mid \Lambda$	
		$A \rightarrow aAS \mid a$	
		$B \rightarrow SbS \mid A \mid bb$	
		a) Eliminate useless symbols if any	

- a) Eliminate useless symbols, if any.
- b) Eliminate Λ productions

c) The Language of all strings with 00 is not a Substring. d) The Language of all strings end with 01. Write a Turing Machine to copy strings. 07 (c) (a) Define: Context-Free Grammars, Chomsky Normal Form and Pushdown Q.5 03 Automata. (**b**) Calculate following: 04 1) $\delta^*(q_0, \Lambda)$ 2) δ^* (q₀, 0) 3) δ^* (q₀, 01) 4) δ^* (q₀, 010) 0 1 0 ٨ ť s ٨ ٨ qo ٨ Given the context-free grammar G, find a CFG G' in Chomsky Normal 07 (c) Form generating $L(G) - \{^\}$. $S \rightarrow AACD \mid ACD \mid AAC \mid CD \mid AC \mid C$ $A \rightarrow aAb \mid ab$ $C \rightarrow aC \mid a$ $D \rightarrow aDa \mid bDb \mid aa \mid bb$ **Q.6** (a) Draw F.A. and Transition Table for following. 03 (a+b)*baaa. Convert the given NFA to DFA 04 **(b)** 0, 1 0, 1 0,1 \mathbf{q}_1 \mathbf{q}_2 q₀ Prove that the following CFG is Ambiguous. 07 (c) $S \rightarrow S + S \mid S * S \mid (S) \mid a$ Write the unambiguous CFG for the above grammar. Draw parse tree for string a+a*a What is Initial Functions? **Q.7** (a) 03 (b) Find a minimum-state FA for the following FA 04 b b 2 а 5 а 1 а b а b 3 b

а

(b) Draw F.A. and Transition Table for following.

2

04

(c) For the PDA, $(\{q0, q1\}, \{0, 1\}, \{0, 1, z0\}, \delta, q0, z0, \phi)$, where δ is $\delta(q0, \varepsilon, z0) = \{(q1, \varepsilon)\}$ $\delta(q0, 0, z0) = \{(q0, 0z0)\}$ $\delta(q0, 0, 0) = \{(q0, 00)\}$ $\delta(q0, 1, 0) = \{(q0, 10)\}$ $\delta(q0, 1, 1) = \{(q0, 11)\}$ $\delta(q0, 0, 1) = \{(q1, \varepsilon)\}$ $\delta(q1, 0, 1) = \{(q1, \varepsilon)\}$ $\delta(q1, \varepsilon, z0) = \{(q1, \varepsilon)\}$ Obtain CFG accepted by the above PDA.

- Q.8 (a) What is Primitive Recursive Functions?
 (b) Define Pumping Lemma for Regular Language. Using Pumping Lemma
 03
 04
 - Prove that given Language is not regular Language. $L = \{ 0^{i} 1^{j} 0^{k} | k > i + j \}.$
 - (c) For the language $L = \{ xcx^r / x \in \{a,b\}^* \}$ design a PDA(Push Down Automata) and trace it for string "bacab" 07

07