\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2021

Subject Code:3151605
Date:09/09/2021

Subject Name:Formal Language and Automata Theory

 Time:10:30 AM TO 01:00 PM
Total Marks: 70

 Instructions:1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Marks

Q. 1 (a) What do you mean by formal languages? Describe.
(b) State whether the following statement(s) is/are True or False. Justify your answer.
i. $\quad L=\{i!\mid i>=0\}$ is a regular language.
ii. $\quad L=\left\{a^{i} b^{j} c^{j} \mid i=j\right\}$ is a Context Free Language.
(c) Define DFA and construct DFA for the following languages: $\Sigma=$ $\{a, b\}$
$\mathrm{L} 1=\{$ Last two symbols of the string are same $\}$
$\mathrm{L} 2=\{$ Every a is followed by at least two $b s\}$
Q. 2 (a) What is regular expression? Write regular expression for the language which contains at least one occurrence of every symbol. $\Sigma=$ $\{a, b, c\}$
(b) Define Extended transition function for NFA and find $\delta^{*}(1, \mathrm{abb})$ for the following transition table of NFA-^.

\boldsymbol{q}	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{a})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{b})$	$\boldsymbol{\delta}(\mathbf{q}, \boldsymbol{\Lambda})$
1	\emptyset	\emptyset	$\{2\}$
2	$\{3\}$	\emptyset	$\{5\}$
3	\emptyset	$\{4\}$	\emptyset
4	$\{4\}$	\emptyset	$\{1\}$
5	\emptyset	$\{6,7\}$	\emptyset
6	$\{5\}$	\emptyset	\emptyset
7	\emptyset	\emptyset	$\{1\}$

(c) Minimize the following DFA and construct the minimized DFA.
(c) Consider the DFAs for languages L1 and L2 respectively and construct DFA for L1 U L2 and L1 \cap L2.

Q. 3 (a) Context free languages are not closed under intersection operation.

Explain this statement with example.
(b) What is pumping lemma. Prove the following language is not regular
using pumping lemma.
$L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$
(c) Convert the following NFA-^ into NFA and DFA.

OR

Q. 3 (a) What are reachable symbols? Explain with example. 03
(b) Convert the following grammar into Chomsky Normal Form.
$\mathrm{G}(\mathrm{V}, \Sigma, \mathrm{S}, \mathrm{P})=\{\{\mathrm{E}, \mathrm{T}\},\{\mathrm{id}\},\{\mathrm{E}\},\{\mathrm{E}->\mathrm{E}+\mathrm{T}|\mathrm{T}, \mathrm{T}->\mathrm{id}| \wedge\}\}$
(c) Prove: "For every alphabet, every regular language over can be accepted by a finite automaton."
Q. 4 (a) State whether the following sentence(s) is/are True or False. Justify your answer.
i. DFA is more powerful than NFA.
ii. NPDA is more powerful than DPDA.

Note: Here, the term powerful is with respect to language acceptance.
(b) Define Context Free Grammar and write CFG for the following languages: $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
i. $L=\left\{a^{i} b^{j} c^{j}{ }^{j} i, j>=0\right\}$
ii. $\mathrm{L}=\{$ strings in which first, last and middle symbols are same $\}$
(c) Define Push Down Automata and construct it for $L=\left\{a^{i} b^{j} c^{j} d^{i} \mid\right.$ $i, j>=0\}$

OR

Q. 4 (a) Define ambiguous grammar and write unambiguous grammar of the following grammar.
E->E+E |E.E $\left|E^{*}\right|(E) \mid$ id
(b) Explain Post correspondence problem with example.
(c) What are the limitations of PDA as compared to Turing Machine? Construct PDA for $L=\left\{w w^{r} \mid w \in\{a, b\}^{*}\right\}$
Q. 5 (a) Define the followings:

- Primitive recursive functions
- Partial functions
(b) Write a note on Chomsky Hierarchy.
(c) Define Turing Machine and construct the same for language of odd length palindrome strings.

OR

Q. 5 (a) Define recursive and recursively enumerable languages. 03
(b) Construct turing machine for $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n}>=0\right\}$
(c) Define unrestricted grammar and Write unrestricted grammar for the following languages.
$\mathrm{L} 1=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n}>=0\right\}$
$\mathrm{L} 2=\left\{\mathrm{w}^{\mathrm{r}} \mathrm{w} \mid \mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$

