GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–V (NEW) EXAMINATION – WINTER 2021 Subject Code:3150703 Date:17/12/2021 Subject Name:Analysis and Design of Algorithms			
Tim	Time:02:30 PM TO 05:00 PM Total Mark		
Instr	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a) (b)	Define algorithm. Discuss key characteristics of algorithms. Explain why analysis of algorithms is important? Explain: Worst Case, Best	03 04
	(c)	Write and analyze an insertion sort algorithm to arrange n items into ascending order.	07
Q.2	(a) (b)	Write an algorithm of Selection Sort Method. Sort the following numbers using heap sort.	03 04
	(c)	20, 10, 50, 40, 30 Sort the following list using quick sort algorithm: <50, 40, 20, 60, 80, 100, 45, 70, 105, 30, 90, 75> Also discuss worst and best case of quick sort algorithm.	07
	(c)	Apply merge sort algorithm on array $A = \{2,7,3,5,1,9,4,8\}$. What is time complexity of merge sort in worst case?	07
Q.3	(a)	What is Principle of Optimality? Explain its use in Dynamic Programming Method	03
	(b) (c)	Explain Binomial Coefficient algorithm using dynamic programming. Solve the following 0/1 Knapsack Problem using Dynamic Programming. There are five items whose weights and values are given in following arrays. Weight w [] = $\{1,2,5,6,7\}$ Value v [] = $\{1, 6, 18, 22, 28\}$ Show your equation and find out the optimal knapsack items for weight capacity of 11 units.	04 07
		OR OR	
Q.3	(a)	Compare Dynamic Programming Technique with Greedy Algorithms	03
	(b) (c)	Give the characteristics of Greedy Algorithms. Obtain longest common subsequence using dynamic programming. Given A = "acabaca" and B = "bacac"	04 07
Q.4	(a)	Using greedy algorithm find an optimal schedule for following jobs with n=7 profits: (P1, P2, P3, P4, P5, P6, P7) = $(3, 5, 18, 20, 6, 1, 38)$ and deadline (d1, d2, d3, d4, d5, d6, d7) = $(1, 3, 3, 4, 1, 2, 1)$	03
	(b)	Find Minimum Spanning Tree for the given graph using Prim's Algo.	04
5 9 15 E 9 F 11 G			

1

(c) Explain in brief Breadth First Search and Depth First Search Traversal 07 techniques of a Graph with Example.

OR

- Q.4 (a) Find an optimal Huffman code for the following set of frequency. A : 50, b: 03 20, c: 15, d: 30
 - (b) Find Minimum Spanning Tree for the given graph using Kruskal Algo.

 $\begin{array}{c} 13 \\ 13 \\ 15 \\ 15 \\ c \\ 3 \\ 4 \\ 5 \\ c \\ c \\ 15 \\ c \\ 6 \\ 2 \\ f \end{array}$

- (c) Explain Backtracking Method. What is N-Queens Problem? Give solution 07 of 4- Queens Problem using Backtracking Method
- Q.5 (a) Define Articulation point, Acyclic Directed Graph, Back Edge
 - (b) Show the comparisons that naïve string matcher makes for the pattern 04 p=0001 in the text T=000010001010001
 - (c) Explain spurious hits in Rabin-Karp string matching algorithm with example. Working modulo q=13, how many spurious hits does the Rabin-Karp matcher encounter in the text T = 2359023141526739921 when looking for the pattern P = 31415?

- Q.5 (a) Explain polynomial reduction.
 - (b) Differentiate branch and bound and back tracking algorithm. 04
 - (c) Explain P, NP, NP complete and NP-Hard problems. Give examples of each 07

04

03

03