\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2021

Subject Code:3150703
Date:17/12/2021

Subject Name:Analysis and Design of Algorithms Time:02:30 PM TO 05:00 PM

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Define algorithm. Discuss key characteristics of algorithms.
(b) Explain why analysis of algorithms is important? Explain: Worst Case, Best Case and Average Case Complexity with suitable example.
(c) Write and analyze an insertion sort algorithm to arrange n items into ascending order.
Q. 2 (a) Write an algorithm of Selection Sort Method. 03
(b) Sort the following numbers using heap sort.
$20,10,50,40,30$
(c) Sort the following list using quick sort algorithm: $<50,40,20,60,80,100$, $45,70,105,30,90,75>$ Also discuss worst and best case of quick sort algorithm.

> OR
(c) Apply merge sort algorithm on array $A=\{2,7,3,5,1,9,4,8\}$. What is time 07
complexity of merge sort in worst case?
Q. 3 (a) What is Principle of Optimality? Explain its use in Dynamic Programming 03 Method
(b) Explain Binomial Coefficient algorithm using dynamic programming.
(c) Solve the following 0/1 Knapsack Problem using Dynamic Programming.

There are five items whose weights and values are given in following arrays. Weight $w[]=\{1,2,5,6,7\}$ Value $v[]=\{1,6,18,22,28\}$ Show your equation and find out the optimal knapsack items for weight capacity of 11 units.

OR

Q. 3 (a) Compare Dynamic Programming Technique with Greedy Algorithms 03
(b) Give the characteristics of Greedy Algorithms. 04
(c) Obtain longest common subsequence using dynamic programming. Given A 07
= "acabaca" and B = "bacac".
Q. 4 (a) Using greedy algorithm find an optimal schedule for following jobs with $\mathrm{n}=7 \quad 03$ profits: $(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5, \mathrm{P} 6, \mathrm{P} 7)=(3,5,18,20,6,1,38)$ and deadline $(\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3, \mathrm{~d} 4, \mathrm{~d} 5, \mathrm{~d} 6, \mathrm{~d} 7)=(1,3,3,4,1,2,1)$
(b) Find Minimum Spanning Tree for the given graph using Prim's Algo.

(c) Explain in brief Breadth First Search and Depth First Search Traversal techniques of a Graph with Example.

OR
Q. 4 (a) Find an optimal Huffman code for the following set of frequency. A : 50, b:
$20, \mathrm{c}: 15, \mathrm{~d}: 30$
(b) Find Minimum Spanning Tree for the given graph using Kruskal Algo.

(c) Explain Backtracking Method. What is N-Queens Problem? Give solution of 4- Queens Problem using Backtracking Method
Q. 5 (a) Define Articulation point, Acyclic Directed Graph, Back Edge
(b) Show the comparisons that naïve string matcher makes for the pattern $\mathrm{p}=0001$ in the text $\mathrm{T}=000010001010001$
(c) Explain spurious hits in Rabin-Karp string matching algorithm with example. Working modulo $\mathrm{q}=13$, how many spurious hits does the RabinKarp matcher encounter in the text $\mathrm{T}=2359023141526739921$ when looking for the pattern $\mathrm{P}=31415$?

OR

Q. 5 (a) Explain polynomial reduction.
(b) Differentiate branch and bound and back tracking algorithm.
(c) Explain P, NP, NP complete and NP-Hard problems. Give examples of each

