\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2021Subject Code:3151605Date:01/01/2022
Subject Name:Formal Language and Automata Theory Time:02:30 PM TO 05:00 PM

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Marks

Q. 1 (a) Justify the need of different automata in theory of computation. 03
(b) Discuss the equivalence between ε-NFA and NFA with example.
(c) List out the steps involved in pumping lemma for regular language. Prove that $\mathrm{L}=\left\{\mathrm{a}^{\wedge} \mathrm{nb} \wedge \mathrm{n}, \mathrm{n}>=0\right\}$ is a non-regular language using pumping lemma.
Q. 2 (a) Discuss undecidable problems with respect to turing machine.
(b) Construct the minimal DFA which accepts all the binary strings which integer values is divisible by 3 .
(c) Construct the minimal FA that accept the language over alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$,

1. Every string ends with aa.
2. Every string has odd occurrences of ab.
3. Every string is divisible by 4 .

OR

(c) Construct the NFA that accept the language over alphabet
$\Sigma=\{\mathrm{a}, \mathrm{b}\}$

1. Every string ends contains substring ab.
2. Every string starts and ends with different symbol
3. Every string starts and ends with same symbol
Q. 3 (a) Define Context Free Language (CFL) and prove that every RL is CFL.
(b) Write the correct regular expressions for the following languages over alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$,
4. Every string contains substring 'ab'.
5. Every string contains atmost 2 a's.
6. $6^{\text {th }}$ symbol from the RHS is always b.
7. Length of the string is odd
(c) Describe useless symbol, unit-production and null-production with example for the simplification of CFG.

OR

Q. 3 (a) Define Context Free Grammar (CFG) with example..

03
(b) Write the correct regular expressions for the following languages over alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$,

1. Every string contains even no. of a's.
2. Every string contains atleast 2 b's.
3. $4^{\text {th }}$ symbol from the LHS is always a.
4. Length of the string is congruent $\cong 2$ mode 5 .
(c) List out the steps involved in CFG to PDA conversion. Generate the CFG for the language $\mathrm{L}=\left\{\mathrm{a}^{\wedge} \mathrm{mb}^{\wedge} \mathrm{n}, \mathrm{m}<\mathrm{n}, \mathrm{m}, \mathrm{n}>=1\right\}$ and convert it into PDA.
Q. 4 (a) Explain recursive enumerable language with example.
(b) Explain Chomsky Normal Form (CNF) with example.
(c) List out the operations performed on Push Down Automata (PDA). Construct the PDA over alphabet $\Sigma=\{a, b\}$ for the language
$\mathrm{L}=\left\{\mathrm{a}^{\wedge} \mathrm{nb} \wedge \mathrm{n} / \mathrm{n}>=1\right\}$. Justify your answer.
OR
Q. 4 (a) Explain context sensitive language with example.
(b) Explain BacosNaur Form (BNF) with example.

04
(c) What is Instantaneous Identification (ID) in Push Down

Automata (PDA)? Construct the PDA over alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ for the language
$\mathrm{L}=\left\{\mathrm{a}^{\wedge} \mathrm{ncb} \wedge \mathrm{n} / \mathrm{n}>=1\right\}$. Justify your answer.
Q. 5 (a) What is Bounded Mineralization? Discuss it in detail. 03
(b) Explain primitive recursion function with example. $\mathbf{0 4}$
(c) Define Turing machine. Construct the turing machine for the language $\mathrm{L}=\left\{\mathrm{a}^{\wedge} \mathrm{nb}^{\wedge} \mathrm{nc} \wedge \mathrm{n}, \mathrm{n}>=1\right\}$.

OR

Q. 5 (a) Explain partial function with example.
(b) Construct the turing machine for the language L of all the strings of a's and b's where no. of a is even
(c) How turing machine works as language acceptor and as a transducer? Construct the turing machine as a transducer for the $\mathrm{f}(\mathrm{m}, \mathrm{n})=\mathrm{m}+\mathrm{n}$.

