GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–V(NEW) EXAMINATION – SUMMER 2022 Subject Code:3151605 Date:04/06/2022			
Subject Time:02	ubject Name:Formal Language and Automata Theory Sime:02:30 PM TO 05:00 PM Total Distructions:		
1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
4.	Sim	ple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a) (b)	Define DFA. Give Difference between DFA and NFA Write down Regular Expressions (R.E.) for the following languages over the $\sum = \{0,1\}$ 1) The language of the strings ends with 0 and starts with 1 2) The language of the strings begins with 00 or 11	03 04
	(c)	Draw DFA for the R.E.= $(1+0) * 10 (1+0) * 01 (1+0) *$ where $\sum = \{0,1\}$	07
Q.2	(a)	Give recursive definition of the extended transition function, δ^* for DFA and NFA	03
	(b) (c)	Compare DFA, NFA and NFA – Λ Draw NFA for the languages of all Strings that do not end with 01 where $\Sigma = \{0,1\}$. Also convert it to DFA	04 07
	(c)	OR Draw NFA Λ for R.E. = (11+110) * 0 where $\Sigma = \{0,1\}$. Also Convert it to NFA.	07
Q.3	(a)	Define CFG and Ambiguous CFG	03
	(b) (c)	Explain Kleene's Theorem part-I Design PDA for the language $L = \{ XCX^r \mid X \in \{a,b\}^* \}$	04 07
Q.3	(a)	Define Pumping lemma for CFL	03
	(b)	Explain Kleene's Theorem part-II	04
0.4	(c)	Design PDA for the language $L = \{XX^T \mid X \in \{a,b\}^*\}$	07
Q.4	(a) (b)	Find the CFG for the language $I = \{\{a^i \mid b \mid c^k \mid i = i + k\}\}$	03
	(c) (c)	Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form generating $L(G) - \{\}$ $S \rightarrow aY \mid Ybb \mid Y$ $X \rightarrow A \mid a$ $Y \rightarrow aXY \mid bb \mid XXa$	07
04	(a)	Design a CFG for the following language	03
7.7	(a)	$L = \{x \in (0,1) * n_0(x) = n_1(x)\}$	UJ
6	(b)	Use Pumping Lemma to show that $L = \{x \in \{0,1\} * x \text{ is a palindrome}\}$ is not a regular language	04
C.	7		

1

