\qquad
\qquad
GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-V(NEW) EXAMINATION - SUMMER 2022Date:04/06/2022
Subject Name:Formal Language and Automata Theory Time:02:30 PM TO 05:00 PM

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

MARKS

Q. 1 (a) Define DFA. Give Difference between DFA and NFA
(b) Write down Regular Expressions (R.E.) for the following 04 languages over the $\sum=\{0,1\}$

1) The language of the strings ends with 0 and starts with 1
2) The language of the strings begins with 00 or 11
(c) Draw DFA for the R.E. $=(1+0) * 10(1+0) * 01(1+0) *$ where $\sum=\{0,1\}$
Q. 2 (a) Give recursive definition of the extended transition function, δ^{*} 03(b) Compare DFA, NFA and NFA $-\Lambda$04
(c) Draw NFA for the languages of all Strings that do not end with 07 01 where $\sum=\{0,1\}$. Also convert it to DFA
OR
(c) Draw NFA Λ for R.E. $=(11+110) * 0$ where $\sum=\{0,1\}$. Also 07 Convert it to NFA.
Q. 3 (a) Define CFG and Ambiguous CFG 03
(b) Explain Kleene's Theorem part-I 04
(c) Design PDA for the language $\mathrm{L}=\left\{\mathrm{XCX}^{\mathrm{r}} \mid \mathrm{X} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ 07
OR
Q. 3 (a) Define Pumping lemma for CFL 03
(b) Explain Kleene's Theorem part-II 04
(c) Design PDA for the language $\mathrm{L}=\left\{\mathrm{XX}^{\mathrm{r}} \mid \mathrm{X} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$ 07
Q. 4 (a) Find the CFG for the R.E. $=(011+1) *(01) *$ 03
(b) Give CFG for the language $L=\left\{\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{j}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{i}=\mathrm{j}+\mathrm{k}\right\}\right\}$ 04
(c) Given the Context Free Grammar G, find a CFG G' in Chomsky 07
Normal Form generating $L(G)-\{ \}$
$\mathrm{X} \rightarrow \Lambda \mid \mathrm{a}$
$\mathrm{Y} \rightarrow \mathrm{aXY}|\mathrm{bb}| \mathrm{XXa}$
OR
Q. 4 (a) Design a CFG for the following language. 03
$\mathrm{L}=\left\{\mathrm{x} \in(0,1) * \mid \mathrm{n}_{0}(\mathrm{x})=\mathrm{n}_{1}(\mathrm{x})\right\}$
(b) Use Pumping Lemma to show that $\mathrm{L}=\{\mathrm{x} \in\{0,1\} * \mid \mathrm{x}$ is a 04palindrome $\}$ is not a regular language
(c) Consider following grammar:
$\mathrm{S} \rightarrow \mathrm{A} 1 \mathrm{~B}$
$\mathrm{A} \rightarrow 0 \mathrm{~A} \mid \Lambda$
$\mathrm{B} \rightarrow 0 \mathrm{~B}|1 \mathrm{~B}| \Lambda$
Give leftmost and rightmost derivations of the string 00101. Also draw the parse tree corresponding to this string
Q. 5 (a) Define Turing machine 03
(b) Explain Recursive functions with example 04
(c) Design a Turing machine for deleting nth symbol from a string w from the alphabet $\sum=\{0,1\}$

OR

Q. 5 (a) Explain Universal Turing Machine03
(b) Define - Primitive recursive functions and also give complete primitive recursive derivations for the function, $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\operatorname{Add}(x, y)=x+y$
(c) Draw a Turing Machine that accepts the language L 07 $=\left\{X X \mid X \in\{a, b\}^{*}\right\}$

