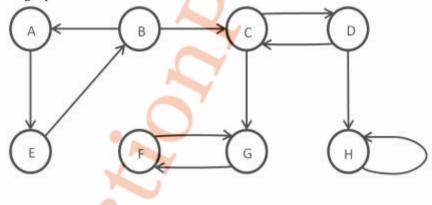
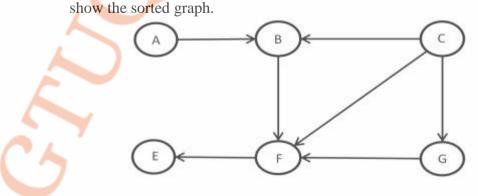

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–V (NEW) EXAMINATION – WINTER 2022 Subject Code:3150703 Date:09-01-2023 Subject Name:Analysis and Design of Algorithms			
		:30 AM TO 01:00 PM Total Mar	ks:70
Instru	1. 2. 3. 4.		
			Marks
Q.1	(a)	order. LCS, Quick-Sort, Merge-Sort, Counting-Sort, Heap-Sort, Selection-Sort,	03
	(b)	Insertion-Sort, Bucket-Sort, Strassen's Algorithm. State whether the statements are correct or incorrect with reasons. 1. $O(f(n)) + O(f(n)) = O(2f(n))$ 2. If $3n + 5 = O(n^2)$, then $3n + 5 = o(n^2)$	04
	(c)	Explain asymptotic analysis with all the notations and its mathematical inequalities.	07
Q.2	(a)	What is the use of Loop Invariant? What should be shown to prove that an algorithm is correct?	03
	(b) (c)	Apply LCS on sequence <a,b,a,c,b,c> for pattern <a,b,c></a,b,c></a,b,a,c,b,c>	04 07
	(c)	Perform the analysis of a recurrence relation $T(n) = 2T\left(\frac{n}{2}\right) + \theta(n^2)$ by drawing its recurrence tree.	07
Q.3	(a)	Consider the array 2,4,6,7,8,9,10,12,14,15,17,19,20. Show (without actually sorting), how the quick sort performance will be affected with such input.	03
	(b)	· · · · · · · · · · · · · · · · · · ·	04
	(c)	Apply Kruskal's algorithm on the given graph and step by step generate the MST.	07
		A = B	
C		7	


Q.3 (a) Consider an array of size 2048 elements sorted in non-decreasing order. 03 Show how the Binary Search will perform on this size by analysis of its recurrence relation. Derive the running time. 04

OR


- (b) Explain the steps of greedy strategy for solving a problem.
- (c) Apply Prim's algorithm on the given graph in Q.3 (C) FIG:1 Graph 07 G(V,E) and step by step generate the MST.
- 03 **O.4** (a) Given is the S-table after running Chain Matrix Multiplication algorithm. Calculate parenthesized based the output on PRINT_OPTIMAL_PARENTHESIS algorithm. Assume the matrix are names from A_1, A_2, \ldots, A_n

- (b) Explain states, constraints types of nodes and bounding function used by 04 backtracking and branch and bound methods.
- 07 (c) Apply the algorithm to find strongly connected components from the given graph.

- OR
- Consider a Knapsack with maximum weight capacity M is 7, for the three **O.4** (a) 03 objects with value $\langle 3, 4, 5 \rangle$ with weights $\langle 2, 3, 4 \rangle$ solve using dynamic programming the maximum value the knapsack can have.
 - Explain the Minimax principle and show its working for simple tic-tac-toe game **(b)** 04 playing. 07
 - (c) Given is the DAG, apply the algorithm to perform topological sort and

- When can we say that a problem exhibits the property of Optimal Sub-Q.5 03 **(a)** structure?
 - Create an example of string P of length 7 such that, the prefix function of KMP 04 **(b)** string matcher returns $\pi[5] = 3$, $\pi[3] = 1$ and $\pi[1] = 0$ 07
 - Explain the 3SAT problem and show that it is NP Complete. (c)

OR

- Sub-problem (a) Explain Over-lapping 0.5 with respect to dynamic 03 programming.
 - (b) Show that if all the characters of pattern P of size m are different, the naïve string 04 matching algorithm can perform better with modification. Write the modified algorithm that performs better than O(n.m).
 - (c) Explain with example, how the Hamiltonian Cycle problem can be used to solve 07 the Travelling Salesman problem.
