GUJARAT TECHNOLOGICAL UNIVERSITY

RE SEMESTED V (NEW) EXAMINATION WINTED 2022			
Subject Code: 3151605			1_2023
Subject Couc.5151005 Date.00-01-20			
Subject Name: Formal Language and Automata Theory			
Time:10:30 AM TO 01:00 PM Total Marks:70			
Instructions:			
	1.	Attempt all questions.	
	2. 3	Figures to the right indicate full marks	
	4 .	Simple and non-programmable scientific calculators are allowed.	
			MARKS
01	(9)	Define Transition Diagrams for a DFA	03
Q.1	(\mathbf{a})	State the formal notation for E-NFA	03
			07
	(C)	Explain subset construction method with suitable example.	07
Q.2	(a)	What is Bounded Mineralization?	03
	(b)	Explain partial function with example.	04
	(c)	Explain the steps involved in pumping lemma for regular language using	07
		appropriate example.	
		OR	
	(c)	Prove that every language defined by a regular expression is also defined	07
		by a finite automaton.	
0.2	(-)	State notations for CEC derivation	02
Q.3	(a) (b)	State notations for CFG derivation.	03
	(\mathbf{D})	Explain amolguity in grammar with suitable example.	04
	(C)	explain Chomsky Normal Form (CNF) with example.	07
03	(9)	Define Context Free Grammars	03
Q	(a) (b)	Show that every regular language is a context-free language	03
	(\mathbf{c})	Explain BacosNaur Form (BNF) with example.	07
	(0)		0.
Q.4	(a)	Define Pushdown Automaton.	03
•	(b)	Explain intersection and complements of CFL.	04
	(c)	Design and draw PDA to accept string with more x's than y's.	07
		OR	
Q.4	(a)	Define Deterministic Pushdown Automaton.	03
	(b)	How to convert a PDA to a CFG?	04
	(c)	Design and draw deterministic PDA Accepting "Balance string of	07
		brackets"	
			0.0
Q.5	(a)	Define Turing Machine.	03
	(b)	Write a short note on Universal Turing Machine.	04
	(c)	Develop a Turing Machine to accept palindromes over {a,b}*	07
05		UK Define Contaxt Sansitive Longuego	02
Q.5	(a) (b)	Explain grammar and chomsky hierarchy	03
	(0)	Draw a Turing Machine that accents the language $\int a^n h^n a^n \mid n > 0$ over	04
		$\{a,b\}^*$.	07
C	4	· · · · · · · · · · · · · · · · · · ·	