$\qquad$
$\qquad$

## GUJARAT TECHNOLOGICAL UNIVERSITY <br> BE - SEMESTER- V EXAMINATION-SUMMER 2023

Subject Code: 3151605
Date: 26/06/2023
Subject Name: Formal Language and Automata Theory
Time: 02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) Define Finite Automata and Pushdown Automata. 03
(b) What is ambiguous grammar? Does $S \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \epsilon$ ambiguous?
(c) List out the steps involved in pumping lemma for regular language. Prove that $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}, \mathrm{n}>=0\right\}$ is a non-regular language using pumping lemma.
Q. 2 (a) Define Context Free Grammar (CFG) with example.03
(b) I. Write CFG which contains at least three times $1 \quad 04$
II. Write CFG that must start and end with same symbol
(c) Convert given NFA into an equivalent FA using subset construction method.

| $\delta$ | Input |  |
| :---: | :---: | :---: |
| State | 0 | 1 |
| $q_{0}$ | $\left\{q_{0}\right\}$ | $\left\{q_{0}, q_{1}\right\}$ |
| $q_{1}$ | $\left\{q_{2}\right\}$ | $\left\{q_{2}\right\}$ |
| $q_{2}$ | $\left\{q_{3}\right\}$ | $\left\{q_{3}\right\}$ |
| $q_{3}$ | $\emptyset$ | $\emptyset$ |

OR
(c) Draw the Finite Automata recognizing the languages: $L_{1} \cup L_{2}, L_{1} \cap L_{2}$ and $L_{1}-L_{2}$.

Q. 3 (a) Differentiate Finite Automata vs. Pushdown Automata
(b) Given a CFG, $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{0,1\}, \mathrm{P}, \mathrm{S})$ with P as follows:

$$
\begin{aligned}
& \mathrm{S} \rightarrow 0 \mathrm{~B} \mid 1 \mathrm{~A} \\
& \mathrm{~A} \rightarrow 0 \mathrm{~S}|1 \mathrm{AA}| 0 \\
& \mathrm{~B} \rightarrow 1 \mathrm{~S}|0 \mathrm{BB}| 1
\end{aligned}
$$

Convert it into an equivalent Pushdown Automata (PDA).
(c) Design a Pushdown Automata (PDA) for $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}} \mid \mathrm{n} \geq 0\right\}$.
Q. 3 (a) Perform leftmost derivation and draw parse tree.
$\mathrm{S} \rightarrow \mathrm{A} 1 \mathrm{~B}$
$\mathrm{A} \rightarrow 0 \mathrm{~A} \mid \epsilon$
$\mathrm{B} \rightarrow 0 \mathrm{~B}|1 \mathrm{~B}| \epsilon$
Output string: 1001
(b) Using Extended Transition Function $\delta^{*}$ for FA $\{\{q 0, q 1, q 2, q 3\},\{0.1\}$, $\{q 0\},\{q 3\}, \delta\}$. Calculate $\delta^{*}(q 0,1010010001)$.

(c) Design a Pushdown Automata (PDA) for $L=\left\{a^{n} b^{n+m} c^{m} \mid n, m>=1\right\}$.

## OR

Q. 4 (a) Write a note on Chomsky Hierarchy.
(b) Using recursive definition of $\delta^{*}$ in NFA, check acceptability of string 101010 over $\Sigma=\{0,1\}$.

(c) Design a TM for accepting palindrome strings of even \& odd length.
Q. 4 (a) Differentiate Recursively Enumerable Language vs. Recursive Language.03
(b) Write short note on Universal Turing Machine. 04
(c) Write a Turing Machine to delete a symbol from tape head position from 07 given string.
Q. 5 (a) Show that function $f(x, y)=x+y$ is primitive recursive.
(b) Convert given Context Free Grammar (CFG) to an equivalent Chomsky's Normal Form (CNF).
$\mathrm{S} \rightarrow \mathrm{aAbB}$
$\mathrm{A} \rightarrow \mathrm{Ab} \mid \mathrm{b}$
$\mathrm{B} \rightarrow \mathrm{Ba} \mid \mathrm{a}$
(c) Prove that If $\mathrm{L}_{1}$ and $\mathrm{L}_{2}$ are context - free languages, then the languages
$\mathrm{L}_{1} \mathrm{UL}_{2}, \mathrm{~L}_{1} \cap \mathrm{~L}_{2}$, and $\mathrm{L}_{1}{ }^{*}$ are also CFLs.

## OR

Q. 5 (a) What are Primitive Recursive Functions?03
(b) Explain Post correspondence problem with example. $\mathbf{0 4}$
(c) Convert given NFA- $\wedge$ to an equivalent FA.

| $q$ | $\delta(q, \wedge)$ | $\delta(q, 0)$ | $\delta(q, 1)$ |
| :---: | :---: | :---: | :---: |
| A | $\{\mathrm{B}\}$ | $\{\mathrm{A}\}$ | $\phi$ |
| B | $\{\mathrm{D}\}$ | $\{\mathrm{C}\}$ | $\phi$ |
| C | $\phi$ | $\phi$ | $\{\mathrm{B}\}$ |
| D | $\phi$ | $\{\mathrm{D}\}$ | $\phi$ |
| $* * * * * * * * * * * * *$ |  |  |  |

