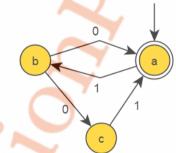

Subject	(Cod Nan 2:30	UJARAT TECHNOL BE – SEMESTER- V EXAM e: 3151605 ne: Formal Language and PM TO 05:00 PM	INATION-SU Automata 7	MMER 2023 Date: 26/06/2023		
1.	Atte	mpt all questions. a suitable assumptions wherever	nacassary	Co		
3.	Fig	res to the right indicate full mark ple and non-programmable scient	KS.	s are allowed.		
Q.1	(a) (b)	Define Finite Automata and Pu What is ambiguous grammar? I List out the steps involved in pu that L= {a ⁿ b ⁿ , n>=0} is a non-re	shdown Autor Does S→ aSbS Imping lemma	nata. 5 bSaS <i>e</i> ambiguous? 1 for regular language. Prove	03 04 07	
Q.2	(a)	Define Context Free Grammar	(CFG) with ex	ample.	03	
-	(b)	I. Write CFG which contains at least three times 1				
	(c)	II. Write CFG that must start and end with same symbol(c) Convert given NFA into an equivalent FA using subset construction method.				
		δ Input				
		State	0	1		
		q_0 q_1	$\{q_o\}$ $\{q_2\}$	$\{q_0, q_1\}$ $\{q_2\}$		
		q_1	{q ₃ }	{q_3}		
		q ₃	Ø	Ø		
			OR			
	(c)	Draw the Finite Automata record $L_1 - L_2$. M1 1 0 0 0	M2	aguages: $L_1 \cup L_2, L_1 \cap L_2$ and $0 \qquad 0 \qquad 0 \qquad 1 \qquad R$	07	
Q.3	(a) (b)	Differentiate Finite Automata v Given a CFG, $G = (\{S, A, B\}, A, B\}, A \rightarrow 0S 1AA 0$ $B \rightarrow 1S 0BB 1$			03 04	


Convert it into an equivalent Pushdown Automata (PDA). (c) Design a Pushdown Automata (PDA) for $L = \{a^n b^{2n} | n \ge 0\}$. 07

- (a) Perform leftmost derivation and draw parse tree. 0.3 S→A1B $A \rightarrow 0A \mid \epsilon$ $B \rightarrow 0B | 1B | \epsilon$ Output string: 1001
 - (b) Using Extended Transition Function δ^* for FA {{q0,q1,q2,q3}, {0.1}, $\{q0\}, \{q3\}, \delta\}$. Calculate $\delta^*(q0, 1010010001)$.

(c) Design a Pushdown Automata (PDA) for $L = \{a^n b^{n+m} c^m | n,m \ge 1\}$. 07 OR

- **0.4** (a) Write a note on Chomsky Hierarchy.
 - (b) Using recursive definition of δ^* in NFA, check acceptability of string 101010 04 over $\Sigma = \{0, 1\}.$

	(c)	Design a TM for accepting palindrome strings of even & odd length.	07
		OR	
Q.4	(a)	Differentiate Recursively Enumerable Language vs. Recursive Language.	03
	(b)	Write short note on Universal Turing Machine.	04

- (b) Write short note on Universal Turing Machine.
- (c) Write a Turing Machine to delete a symbol from tape head position from 07 given string.
- **Q.5** Show that function f(x, y) = x + y is primitive recursive. 03 **(a)**
 - Convert given Context Free Grammar (CFG) to an equivalent Chomsky's 04 **(b)** Normal Form (CNF). S→aAbB $A \rightarrow Ab|b$
 - B→Ba|a
 - (c) Prove that If L_1 and L_2 are context free languages, then the languages 07 L_1UL_2 , $L_1 \cap L_2$, and L_1^* are also CFLs.

OR

What are Primitive Recursive Functions? 0.5 03 (a) Explain Post correspondence problem with example. 04 (b)

03

04

03

(c) Convert given NFA- ^ to an equivalent FA.

q	$\delta(q, ^)$	$\delta(q,0)$	$\delta(q, 1)$
А	{B}	{A}	φ
В	{D}	{C}	φ
С	ϕ	ϕ	{B}
D	ϕ	{D}	φ

^{******}

07