\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-V (NEW) EXAMINATION - WINTER 2023

Subject Code:3151605
Date:07-12-2023

Subject Name:Formal Language and Automata Theory Time:10:30 AM TO 01:00 PM

Total Marks:70 Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.
Q. 1 (a) What is Finite Automata? Differentiate DFA vs. NFA.
(b) Write regular expressions (REs) over alphabet $\{0,1\}$
5. Strings start with 0 and has odd length
6. Strings have odd length
7. Strings end with 1 and not contain 00
8. Strings start with 1 and has even length
(c) Draw Finite Automata for following languages:
9. $\mathrm{L} 1=\left\{\mathrm{x} / \mathrm{x} 00\right.$ is not substring of $\left.\mathrm{x}, \mathrm{x} \in\{0,1\}^{*}\right\}$
10. $L 2=\left\{x / x\right.$ ends with $\left.01, x \in\{0,1\}^{*}\right\}$

Draw FA for $L_{1} \cup L_{2}, L_{1} \cap L_{2}$ and $L_{1}-L_{2}$
Q. 2 (a) Prove that CFG: $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \epsilon$ is ambiguous. 03
(b) Define Context Free Grammar.

1. Write CFG for regular expression $(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{a}(\mathrm{a} \mid \mathrm{b})^{*} \mathrm{a}(\mathrm{a} \mid \mathrm{b})^{*}$
2. Write CFG for equal no. of ' a ' and ' b '
(c) Use the pumping lemma to show that following language is not Context 07

Free: $L=\left\{a^{n} b^{n} c^{n} \mid n>=0\right\}$

OR

(c) Design PDA for palindrome with middle symbol ' c '.
Q. 3 (a) Design FAs with $\Sigma=\{0,1\}$ that accept

1. The set of all strings with three consecutive 0 's.
2. The set of all strings those start with ' 1 ' and end with ' 0 '.
(b) Convert given CFG to CNF.
$\mathrm{S} \rightarrow \mathrm{ASB} \mid \epsilon$
$\mathrm{A} \rightarrow \mathrm{aAS} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{SbS}|\mathrm{A}| \mathrm{bb}$
(c) Convert NFA to FA using subset construction method.

NFA Transition table		
\boldsymbol{q}	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{a})$	$\boldsymbol{\delta}(\boldsymbol{q}, \boldsymbol{b})$
1	$\{2,3\}$	$\{4\}$
2	$\{\phi\}$	$\{4\}$
3	$\{4\}$	$\{3\}$
4	$\{\phi\}$	$\{\phi\}$

Q. 3 (a) Write CFG for balanced parentheses and derive (() ())
(b) Draw left most derivation tree for string 'aaabbabbba' using CFG
$\mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA}$
$\mathrm{A} \rightarrow \mathrm{aS}|\mathrm{bAA}| \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bS}|\mathrm{aBB}| \mathrm{b}$
(c) Minimize given FA

Q. 4 (a) Explain classification of grammar as per Chomsky hierarchy.
(b) Draw right most derivation tree for string 'aaabbabbba' using CFG
$S \rightarrow a B \mid b A$
$\mathrm{A} \rightarrow \mathrm{aS}|\mathrm{bAA}| \mathrm{a}$
$B \rightarrow b S|a B B| b$
(c) Conversion from NFA $-\wedge$ to FA

\boldsymbol{q}	$\boldsymbol{\delta}(\boldsymbol{q}, \wedge)$	$\boldsymbol{\delta}(\boldsymbol{q}, \mathbf{0})$	$\boldsymbol{\delta}(\boldsymbol{q}, \mathbf{1})$
A	$\{\mathrm{B}\}$	$\{\mathrm{A}\}$	ϕ
B	$\{\mathrm{D}\}$	$\{\mathrm{C}\}$	ϕ
C	ϕ	ϕ	$\{\mathrm{B}\}$
D	ϕ	$\{\mathrm{D}\}$	ϕ

OR
Q. 4 (a) Differentiate Finite Automata vs. Pushdown Automata
(b) Show that the function $f(x, y)=x+y$ is primitive recursive
(c) Given a CFG, $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{0,1\}, \mathrm{P}, \mathrm{S})$ with P as follows:
$\mathrm{S} \rightarrow 0 \mathrm{~B} \mid 1 \mathrm{~A}$
$\mathrm{A} \rightarrow 0 \mathrm{~S}|1 \mathrm{AA}| 0$
$\mathrm{B} \rightarrow 1 \mathrm{~S}|0 \mathrm{BB}| 1$
Convert it into equivalent PDA.
Q. 5 (a) What operations are performed by Turing machine?03

(b) Explain the halting problem in brief.
(c) Design a Turing machine for accepting $\left(a^{n} b^{n} c^{n} \mid n>=0\right)$

OR

Q. 5 (a) Differentiate recursive language vs. recursively enumerable language
(b) Explain Post's Correspondence Problem (PCP) in brief. 04
(c) Design a Turing machine for copy a string.

