Seat No.:	E 1 4 NI -
Sear NO:	Enrolment No.
scat 110	Linding 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION - SUMMER 2020

Subject Code: 3131704 Date:02/11/2020

Subject Name: DIGITAL ELECTRONICS

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Design a logic circuits for AND,OR and NOT gate using only NAND gates.	03
	(b)	What is the difference between demultiplexer and multiplexer? Explain with necessary diagram and truth table.	04
	(c)	Explain D flip flop in detail with circuit diagram and truth table	07
Q.2	(a)	Derive the SOP expression for following term AB'C' + ABC' + AB'CD + A'BC' + AB	03
	(b)	Explain binary to gray and gray to binary conversion with circuit diagram and truth table.	04
	(c)	Minimize the following function using tabulation method: $F(w, x, y, z) = \sum (0,1,2,8,10,14,15)$	07
		OR	
	(c)	Design a logic circuit for half and full subtraction circuits with K-map equations and truth table.	07
Q.3	(a)	Convert the following numbers to decimal: $(10101.101)_2$, $(330.4)_8$, $(A325)_{16}$	03
	(b)	Construct 3x8 decoders with diagram and necessary truth table.	04
	(c)	Explain following terms with example	07
		1) Inter register-transfer operation	
		2) Arithmetic micro operation	
		3) Shift micro operation	
		4) Logic micro operation	
		OR	
Q.3	(a)	Draw the circuit of 3 input TTL(Transistor Transistor Logic) NAND gate and explain its operation.	03
	(b)	Explain working of 4-bit binary ripple counter.	04
	(c)	Simplify the following equation using K-map and	07
		implement using logic gates:	
		$F(A,B,C,D) = \sum (0,1,2,3,5,7,8,9,10,12,13)$	
Q.4	(a)	Explain BCD adder with diagram and truth table	03
	(b)	Explain 1's and 2's complement with example	04
	(c)	Explain 2-bit UP synchronous counter with K-map	07
		equations and circuit diagram	
		OR	a -
Q.4	(a)	Write short note on PLA.	03
	(b)	Reduce the expression $A+B[AC+(B+C')D]=A+BD$	04
	(c)	With neat sketch explain the operation of clocked RS flip flop with NAND and NOR gates.	07

Q.5	(a)	Represent the decimal number 8620 in BCD, Excess-3, and Gray code.			
((b)	Explain 2 bit magnitude comparator with necessary diagram	04		
((c)	and equation. List out different types of memories used in digital logic	07		
		circuits and define them. OR			
Q.5	(a)	Explain meaning of following micro operations 1) $T_1 : A+B'+1$	03		
		2) T_2 : $A \wedge B$ 3) T_3 : $shr A$			
		Explain BUS transfer logic for two registers	04		
((c)	Design a logic circuit with JK flip-flop flip flop for the given state sequence with necessary K-map equation	07		
		Present state Next state			
		000 001 010			
		010 011			
		011 100 100 101			
		101 000			

			2		

Present state	Next state
000	001
001	010
010	011
011	100
100	101
101	000