GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III EXAMINATION – SUMMER 2020 Subject Code: 3131705 Date: 27/2				
•		e: Dynamics of Linear Systems	, = 0, = 0 = 0	
· · · · · · · · · · · · · · · · · · ·			Marks: 70	
		mpt all questions.		
2.	Mak	e suitable assumptions wherever necessary. res to the right indicate full marks.		
			Marks	
Q.1	(a)	Explain continuous-time and discrete-time signals with suitable example.	03	
	(b)	•	04	
	(c)	What is time-variant and time-invariant system? Determine causality and stability of the following discrete-time systems with justification. Consider $y[n]$ is the system output and $x[n]$ is the system input. 1. $y[n] = x[-n]$ 2. $y[n] = x[n-2] - 2x[n-8]$	07	
Q.2		Explain LTI systems with and without memory.	03	
	(b)	A linear time-invariant system is characterized by its impulse response $h[n] = \left(\frac{1}{2}\right)^n u(n)$. Determine energy density spectrum of the output signal when the	04	
		system is excited by the signal $x[n] = \left(\frac{1}{4}\right)^n u(n).$		
	(c)	Compute and plot the convolution $y[n] = x[n] * h[n]$, where	07	
		$x[n] = \left(\frac{1}{3}\right)^{-n}$ and $h[n] = u[n-1]$.		
	(c)	OR Explain commutative and distributive property of a LTI system.	07	
Q.3	(a)	For $x(t) = 1 + \sin w_0 t + 2\cos w_0 t + \cos \left(2w_0 t + \frac{\pi}{4}\right)$.	03	
		Determine Fourier series coefficient using complex exponential		

(b) Discuss applications of frequency-selective filters.
(c) Discuss the properties of continuous-time Fourier series.

04 07

OR

Q.3 (a) Each of the two sequences $x_1[n]$ and $x_2[n]$ has a period N = 4, and the corresponding Fourier series coefficients are specified as $x_1[n] \longleftrightarrow a_k$ and $x_2[n] \longleftrightarrow b_k$

Where

$$a_0 = a_3 = \frac{1}{2}a_1 = \frac{1}{2}a_2 = 1$$
 and $b_0 = b_1 = b_2 = b_3 = 1$. Using the

multiplication property, determine the Fourier series coefficients c_k for the signal $g[n] = x_1[n] x_2[n]$.

- (b) Discuss applications of frequency-shaping filters.
 Determine whether each of the following statements is true or
 07
- (c) false. Justify your answers.
 - 1. An odd and imaginary signal always has an odd and imaginary Fourier transform.
 - 2. The convolution of an odd Fourier transform with an even Fourier transform is always odd.
- Q.4 (a) Explain time reversal and linearity property for the discrete time Fourier transforms.
 - **(b)** Determine the Fourier transform for $-\pi \le w < \pi$ for the periodic signal $x(n) = \sin\left(\frac{\pi}{3}n + \frac{\pi}{4}\right)$
 - (c) Consider a discrete-time LTI system with impulse response $h(n) = \left(\frac{1}{2}\right)^n u(n).$

Use Fourier transforms to determine the response for the input $x(n) = \left(\frac{3}{4}\right)^n u(n)$.

OR

- Q.4 (a) Explain differentiation and integration property for the continuous time Fourier transforms.
 - **(b)** Determine the Fourier transform of periodic signal $x(t) = 1 + \cos\left(6\pi t + \frac{\pi}{8}\right)$
 - (c) Compute the Fourier transform of each of the following signals:
 - 1. x[n] = u[n-2] u[n-6]
 - 2. $x[n] = \left(\frac{1}{2}\right)^{-n} u[-n-1]$
- Q.5 (a) Determine the Laplace transform and the associated region of convergence for $x(t) = e^{-2t}u(t) + e^{-3t}u(t)$.
 - (b) Determine the function of time x(t), for the following Laplace transforms and their associated regions of convergence: $\frac{1}{s^2+9}, \quad \Re e\{s\} > 0.$
 - (c) Explain properties of the Z-transform. 07

- **Q.5** (a) Find Z-transform and region of convergence of $x(n) = 7\left(\frac{1}{3}\right)^n u(n) 6\left(\frac{1}{2}\right)^n u(n)$.
 - **(b)** Find inverse Z-transform for $X(z) = \log(1 + az^{-1})$, |z| > |a|.
 - (c) Consider the system function corresponding to causal LTI systems: $H(z) = \frac{1}{(1-z^{-1}+\frac{1}{4}z^{-2})(1-\frac{2}{3}z^{-1}+\frac{1}{9}z^{-2})}$.
 - 1. Draw a direct-form block diagram.
 - 2. Draw a block diagram that corresponds to the cascade connection of two second-order block diagrams. Each second-order block diagram should be in direct form.
