\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-III (NEW) EXAMINATION - WINTER 2020
Subject Code:3131707
Date:05/03/2021
Subject Name:Network Analysis
Time:10:30 AM TO 12:30 PM
Total Marks:56

Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Fig. (1)
Q. 2 (a) Explain the ideal Sources and controlled Sources in electrical circuits. 03
(b) Explain fundamental cut-set matrix.
(c) Prove that the condition (Rth $=\mathrm{RL}$) for maximum power transfer theorem.
Q. 3 (a) Define the following terms:
(I) Linear Network
(II) Passive Network
(III) Active network
(b) Construct the dual network for the following circuit (fig. 3).

Fig.(3)
(c) Construct the graph, tree and co-tree for the following circuit (fig. 4).

Fig. (4)
Q. 4 (a) State the Kirchhoff voltage law (KVL) and the Kirchhoff current law (KCL).
(b) Explain the procedure for solving network using Thiamin's Theorem.
(c) Minimize the following network (fig. 5) using Source transformation rules and estimate the value of current (i).

Fig. (5)
Q. 5 (a) Define time constant and show the time constant of RL and RC circuits.
(b) How the following elements will behave at $t=0$ and $t=\infty$. Draw the equivalent network as well. (a) Inductor (b) Capacitor.
(c) In the network of the fig. (6), the switch K is closed at $\mathrm{t}=0$ with capacitor uncharged and with zero current in the inductor. Find the values of i, $\mathrm{di} / \mathrm{dt}$ and $\mathrm{d}^{2} \mathrm{i} / \mathrm{dt}^{2}$ at $\mathrm{t}=0+$, if $\mathrm{V}=200 \mathrm{~V}, \mathrm{R}=20 \Omega, \mathrm{~L}=2 \mathrm{H}$ and $\mathrm{C}=10 \mu \mathrm{~F}$.

Fig. (6)
Q. 6 (a) Determine Z parameters in terms of Y parameter.
(b) Explain about poles and zeroes of network functions and their physical significance.
(c) Evaluate the general solution $\mathrm{i}(\mathrm{t})$ for the following network (fig. 7).

Fig. (7)
Q. 7 (a) Summarize the conditions for reciprocity and symmetry of all the two port parameters.
(b) Explain final value theorem.
(c) Solve the network (fig. 8) for Z parameters.

Fig. (8)
Q. 8 (a) List the advantages of Laplace transformation method over classical methods for solving the differential equations.
(b) Determine the Laplace transform of the function $\mathbf{f}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \boldsymbol{\operatorname { c o s } (\mathrm { w } t)}$
(c) Solve the network (fig. 9) for Y parameters.

Fig.(9)

