GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-IV (NEW) EXAMINATION – WINTER 2020Subject Code:3141708Date:11/02/2021Subject Name:Control TheoryDate:11/02/2021							
				Time:02:30 PM TO 04:30 PM Total Ma		rks:56	
				Instructions:			
	1. 2.	Make suitable assumptions wherever necessary.					
	3.	Figures to the right indicate full marks.					
			MARKS				
01	(\mathbf{a})	Differentiate between open loop system and closed loop systems	02				
Ų.1	(a) (b)	Define Transfer function Find the impulse response of a system whose	03 04				
	(~)	transfer function is $G=1/(S+4)$					
	(c)	Find the overall transfer function of RLC circuit with output across	07				
Q.2	(a)	Write mason's gain formula.	03				
	(b)	Difference between signal flow graph and block diagram	04				
		representation of system					
	(c)	For the hovering systems given by	07				
		$A = \begin{bmatrix} 0 & b \\ -1 & -5 \end{bmatrix}$					
		(a) Find the roots of the characteristic equation.					
		(b) Find the state transition matrix $\Phi(t)$.					
Q.3	(a)	Define 1. Source node, 2. Loop, 3. Sink node	03				
•	(b)	Find the transfer function for the following system	04				
		$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 1 & \mathbf{x} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \mathbf{y}$					
		$y = \begin{bmatrix} 0 & 10 \end{bmatrix} \mathbf{x}$					
	(c)	Find the mathematical model of the mechanical network	07				
		$\vdash \downarrow \downarrow \downarrow \vdash \downarrow \downarrow$					
		$K_1 \longrightarrow M_2 \longrightarrow \mathcal{U}_1$					
		Jum					
Q.4	(a)	What is analogous of all variables in mechanical network in force-	03				
	(1-)	current analogy?	0.4				
	(D)	Explain liquid level systems in brief	V4				

(b) Explain liquid level systems in brief
(c) What is state space model? Define states. Derive the expression for converting state model to transfer function?
04
07

Q.5 (a) Find the polar plot of G=1/S03 What is Bode plot. What should be the input to the system to obtain **(b)** 04 bode plot. What are the units of scales used for plotting bode plot Sketch Bode plots of a unity feedback control system having open-07 (c) loop transfer function as given below. The magnitude plot of this function should be an exact one and not an approximation. Find the $G(s) = \frac{64(s+2)}{s(s+0.5)(s^2+3.2s+64)}$ GM and PM Q.6 03 Find the eigen values for system represented by $A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$ **(a)** Write the rules for drawing root locus 04 **(b)** Sketch the root locus for an open loop transfer function 07 (c) G(s) = k(s+2)/s(s+1)**0.7** (a) Explain standard test signals 03 (b) For the system $G=25/S^2+4S+25$, find the natural frequency, damping 04 ratio. Depending on the damping ratio, describe the system A unity feedback control system's open loop transfer function is (c) 07 $G(s)H(s) = \frac{k(s+13)}{s(s+3)(s+7)}$ Using Routh criterion, calculate the range of k for the system to be stable. If the value of k=1, comment on stability. For the closed loop system $G=(S+1)(S+3)/S^3(S+1)(S+3)$, find the 03 **Q.8** (a) following 1. Order, 2. Type, 3. characteristic equation Check the system stability for system whose characteristic equation is **(b)** 04 given by $S^4 + 8S^3 + 16S + 5 = 0$

(c) Draw unit step response of a second order control systems. Describe 07 all specification in detail.

رى⁰