Seat No.: Enrolment No	eat No.:	Enrolment No
------------------------	----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019 Subject Code: 3130005 Date: 26/11/2019

Ti	ime: 0 structi 1.	Name: Complex Variables and Partial Differential Equations 2:30 PM TO 05:00 PM Total Marks ons: Attempt all questions. Make suitable assumptions wherever necessary.	: 70
		Figures to the right indicate full marks.	
0.1	()	21	Mark
Q.1	(a)	Find the real and imaginary parts of $f(z) = \frac{31}{2+3i}$.	03
	(b)	State De-Movire's formula and hence evaluate $(1+i\sqrt{3})^{100}+(1-i\sqrt{3})^{100}$.	04
	(c)	Define harmonic function. Show that $u(x, y) = \sinh x \sin y$ is harmonic function, find its harmonic conjugate $v(x, y)$.	07
Q.2	(a)	Determine the Mobius transformation which maps $z_1 = 0$, $z_2 = 1$, $z_3 = \infty$	03
	(b)	into $w_1 = -1$, $w_2 = -i$, $w_3 = 1$.	04
	(~)	Define $logz$, prove that $i^i = e^{-(4n+1)\frac{n}{2}}$.	.
	(c)	Expand $f(z) = \frac{1}{(z-1)(z+2)}$ valid for the region	07
		(i) $ z < 1$ (ii) $1 < z < 2$ (iii) $ z > 2$.	
		OR	
	(c)	Find the image of the infinite strips (i) $\frac{1}{4} \le y \le \frac{1}{2}$ (ii) $0 < y < \frac{1}{2}$ under the	07
		transformation $=\frac{1}{7}$. Show the region graphically.	
Q.3	(a)	Evaluate $\int_{c} (x - y + ix^{2}) dz$ where c is a straight line from $z = 0$ to $z = 0$	03
Q.C	(4)	1+i.	02
	(b)	Check whether the following functions are analytic or not at any point,	04
	(a)	(i) $f(z) = 3x + y + i(3y - x)$ (ii) $f(z) = z^{3/2}$.	05
	(e)	Using residue theorem, evaluate $\int_0^\infty \frac{dx}{(x^2+1)^2}$.	07
		OR	
Q.3	(a)	Expand Laurent series of $f(z) = \frac{1-e^z}{z}$ at $z = 0$ and identify the	03
	(1.)	singularity.	0.4
	(b)	If $f(z) = u + iv$, is an analytic function, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Ref(z) ^2 = 2 f'(z) ^2.$	04
	(c)	$\left(\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2}\right) Ref(z) = 2 f(z) .$ Evaluate the following:	07
	(0)	i. $\int_C \frac{z+3}{z-1} dz \text{ where } c \text{ is the circle (a) } z = 2 \text{ (b) } z = \frac{1}{2}.$	U/
		ii. $\int_{C}^{3c} \frac{\sin z}{\left(z - \frac{\pi}{c}\right)^{3}} dz \text{ where } c \text{ is the circle } z = 1.$	
		$J_C\left(z-\frac{\pi}{4}\right)^3$ will write the there $ z =1$.	

Q.4	(a)	Evaluate $\int_0^{2+4i} Re(z)dz$ along the curve $z(t) = t + it^2$.	03
	(b)		04
	(c)	Solve the equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ for the condition of heat along rod without	07
		radiation subject to the conditions (i) $\frac{\partial u}{\partial t} = 0$ for $x = 0$ and $x = l$;	
		(ii) $u = lx - x^2$ at $t = 0$ for all x .	
		OR	
Q.4	(a)	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{2x+3y}$.	03
	(b)	Solve $px + qy = pq$ using Charpit's method.	04
	(c)	Find the general solution of partial differential equation $u_{xx} = 9u_y$ using	07
		method of separation of variables.	
Q.5	(a)	Using method of separation of variables, solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$.	03
	(b)	Solve $z(xp - yq) = y^2 - x^2$.	04
	(c)	A string of length $L = \pi$ has its ends fixed at $x = 0$ and $x = \pi$. At time $t = 0$	07
		0, the string is given a shape defined by $f(x) = 50x(\pi - x)$, then it is	
		released. Find the deflection of the string at any time t. OR	
Q.5	(a)	Solve $p^3 + q^3 = x + y$.	03
	(b)	Find the temperature in the thin metal rod of length l with both the ends	04
		insulated and initial temperature is $\sin \frac{\pi x}{l}$.	
	(c)	Derive the one dimensional wave equation that governs small vibration of an elastic string . Also state physical assumptions that you make for the system.	07

		• • • • • • • • • • • • • • • • • • • •	