GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2020 Subject Code:3130005 Date:09/03/2021						
Subject Name:Complex Variables and Partial Differential Equations Time:10:30 AM TO 12:30 PM Total Marks:56 Instructions:						
	1. At 2. M 3. Fi	ttempt any FOUR questions out of EIGHT questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.	Marks			
Q.1	(a) (b) (c)	Show that the function $u = x^2 - y^2 + x$ is harmonic. Find the fourth roots of -1. (i) Find and sketch the image of the region $ z > 1$ under the transformation $w = 4z$	03 04 03			
		(ii) Find the real and imaginary parts of $f(z) = z^2 + 3z$.	04			
Q.2	(a)	Evaluate $\int_{0}^{2+i} z^2 dz$ along the line $y = x/2$.	03			
	(b)	Determine the Mobius transformation that maps $z = 0, 1, \infty$ onto $w = -1, -i, 1$ respectively.	04			
	(c)	(i) Evaluate $\oint_C \frac{e^{-z}}{z+1} dz$, where C is the circle $ z = 1/2$.	03			
		(ii) For which values of z does the series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ convergent?	04			
Q.3	(a)	Evaluate $\oint_C \frac{dz}{z^2}$ where C is a unit circle.	03			
	(b)	Find the residue $Res(f(z), 2i)$ of the function $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$.	04			
	(c)	Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series in the region $(i) z < 1$,	07			
		(ii)1 < $ z $ < 2, (iii) $ z $ > 2.				
Q.4	(a)	Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where $C: z-2 = 2$.	03			
	(b)	Evaluate by using Cauchy's Residue Theorem $\int_C \frac{5z-2}{z(z-1)} dz$, $C: z = 2$.	04			
	(c)	Find Laurent's series that represent $f(z) = \frac{1}{z(z-1)}$ in the region	07			
		(i)0 < z < 1, $(ii)0 < z-1 < 1$.				

Q.5	(a)	Solve $xp + yq = x - y$.	03
	(b)	Derive p.d.e. from $z = ax + by + ab$ by eliminating <i>a</i> and <i>b</i> .	04
	(c)	(i) Solve $(D^3 - 4D^2D' + 4DD'^2)z = 0.$	03
		(ii) Solve $pq = k$, where k is a constant.	04
Q.6	(a)	Solve $zp + yq = x$.	03
	(b)	Form the p.d.e. by eliminating ϕ from $x + y + z = \phi(x^2 + y^2 + z^2)$.	04
	(c)	(i) Solve $(D^2 + DD' + D' - 1)z = \sin(x + 2y)$.	03
		(ii) Solve $zpq = p + q$ by Charpit's method.	04
Q.7	(a)	Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x}$.	03
	(b)	Solve the p.d.e. $u_x = 4u_y$, $u(0, y) = 8e^{-3y}$.	04
	(c)	A string of length l is initially at rest in its equilibrium position and motion is started by giving each of its points a velocity kx for $0 \le x \le l/2$ and $k(l-x)$ for $l/2 \le x \le l$. Find the displacement $u(x,t)$.	07
0.8	(a)	Solve $DD''(D-2D'-3)z = 0$.	03

- Solve the pde $u_{xx} = 16u_{xy}$. **(b)**
- A bar of length 2 *m* is fully insulated along its sides. It is initially at a uniform (c) 07 temperature of $10^{\circ}C$ and at t = 0 the ends are plunged into ice and maintained at a temperature of $0^{\circ}C$. Determine an expression for the h. temp. t secon. temperature at a point P at a distance x from one end at any subsequent time

04