Seat No.: _____

1

GUJARAT TECHNOLOGICAL UNIVERSITY

Seat	NO		-
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (NEW) EXAMINATION - SUMMER 2022Subject Code:3130005Date:11-07-2022Subject Name:Complex Variables and Partial Differential EquationsTime:02:30 PM TO 05:00 PMTotal Marks:70Instructions:			
	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a) (b)	Express the complex number $-\sqrt{3} - i$ in polar form. Use De Moiver's theorem and find $\sqrt[3]{64i}$.	03 04
	(c)	Verify that $u = 2x - x^3 + 3xy^2$ is harmonic in the whole complex plane and finds it's harmonic conjugate function $v(x, y)$.	07
Q.2	(a)	Discuss Continuity of the function $f(z)$ at the origin: $f(z) = \begin{cases} \frac{Im(z)}{z}, & z \neq 0\\ 0 & z = 0 \end{cases}$	03
	(b)	 Define Log(x + iy) Determine Log(-1 + i 2) Determine all values of log(1 + i) 	04
	(c)	Find the image of the circle $ z + i = 2$ under the transformation $w = \frac{1}{z}$. Also, show the regions graphically.	07
	(c)	OR	07
Q.3	(a)	Evaluate $\oint_C \frac{\sin z}{(z-\pi)^2} dz$, where <i>C</i> is the circle $ z = 4$	03
	(b)	Find the Laurent's series that represent $f(z) = \frac{1}{(z-2)(z-3)}$ in the region 2 <	04
	(c)	z < 3. Find the residues of the function $f(z) = \frac{z}{(z+1)^2(z^2-4)}$ at its poles.	07
Q.3	(a)	OR $\int_{-\infty}^{2+i} dx dx dx dx dx dx$	03
X .0		Evaluate $\int_{0}^{2+i} z^2 dz$ along the line $y = x$	04
		Evaluate $\oint_C \frac{3z+4}{z^2+2z-3} dz$, where C is $ z = 2$	
	(c)	Using Residue theorem, evaluate the following Integral: $\int_{0}^{2\pi} \frac{d\theta}{5-3\sin\theta}$	07
Q.4	(a)	Expand $f(z) = \frac{\sin z}{z^4}$ in Laurent's series about $z = 0$ and identify the singularity.	03
	(b)	Solve: $\frac{\partial^2 z}{\partial x^2} + 10 \frac{\partial^2 z}{\partial x \partial y} + 25 \frac{\partial^2 z}{\partial y^2} = e^{3x+2y}$	04
	(\mathbf{a})	Solve $x^{2}n + y^{2}q = (x + y)z$	07

(c) Solve $x^2 p + y^2 q = (x + y)z$ 07

1

OR

- **Q.4** (a) Find the fixed points of the transformation, $w = \frac{z-1}{z+1}$
 - **(b)** Solve: $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \cos x$
 - (c) Solve: $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$, given that $\frac{\partial z}{\partial y} = -2 \sin y$ when x=0 and z=0 when y is an odd multiple of $\frac{\pi}{2}$
- **Q.5** (a) Solve xp + yq = 3z
 - (b) Solve by the method of separation of variables $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, where 04 $u(0, y) = 8e^{-3y}$
 - (c) A tightly stretched string with fixed end points at x = 0 and x = 10 is initially given by the deflection f(x) = kx(10 x). If it is released from this position, then find the deflection of the string.

- **Q.5** (a) Find complete and singular solution of z = px + qy + pq
 - (b) Using Charpit's method, solve $q = 3p^2$.
 - (c) A rod of 30 cm long has its ends A and B are kept at 20°C and 80°C **07** respectively until steady state conditions prevail. The temperature at each end is suddenly reduced to 0°C and kept so. Find the resulting temperature u(x, t) from the end A.

03

04

07

03

03

04