Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV EXAMINATION - SUMMER 2020

Subject	t Code:	3141	906					Date: 27/10/2020
~				_	_	 _	 	

Subject Name: Fluid Mechanics and Hydraulics Machines

l Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a) (b) (c)	Explain hypothesis of continuum. State and prove Pascal's law. Derive Euler's equation of motion. State assumptions made. How will you obtain Bernoulli's equation from Euler's equation?	03 04 07
Q.2	(a) (b)	How repeating variables selected for dimensionless analysis? With neat sketch explain the conditions of equilibrium for floating body.	03 04
	(c)	Define uniform flow. Obtain stream and velocity potential function when flow is parallel to x-axis. Also plot uniform flow (parallel to x axis). OR	07
	(c)	Derive from first principles, the conditions for ir-rotational flow. Prove that for potential flow, both the stream function and velocity potential function satisfy the Laplace equation.	07
Q.3	(a) (b)	Differentiate between stream and streak line. Define centre of pressure. Obtain expression for centre of pressure for vertical plane surface submerged in liquid.	03 04
	(c)	The water is flowing through a taper pipe of length 100 m having diameters 600 mm at the upper end and 300 mm at the lower end, at the rate of 50 lps. The pipe has slope of 1 in 30. Find the pressure at the lower end if pressure at the higher level is 19.62 N/cm ² . OR	07
Q.3	(a)	The stream function for two dimensional flow is given by $\psi = 2xy$.	03
	(b) (c)	Find velocity potential function ϕ . Define and explain the terms: HGL, TEL State Buckingham's π – theorem. The efficiency η of a fan depends on density ρ , dynamic viscosity μ of the fluid, angular velocity ω , diameter D of the rotor and discharge Q. Express η in terms of	04 07
Q.4	(a)	dimensionless parameters. Derive the expression of force in x and y direction when jet striking symmetrical curved vane tangentially at one tip and leaving other	03
	(b)	end. Prove that maximum velocity in a circular pipe for viscous flow is equal to two times the average velocity of flow.	04
	(c)	Derive Darcy – Weisbach equation.	07

OR

Q.4	(a)	Define priming. Why priming is necessary in centrifugal pump?	03									
	(b)	Classify hydraulic turbines with examples based on following	04									
		criteria:										
		i. Energy at inlet										
		ii. Direction of flow through runner										
		iii. Head at the inlet of turbine										
		iv. Specific speed of turbine										
	(c)	1	07									
	(-)	Shaft power = 11.772 kW, Head = 380 m, Speed = 750 rpm, Overall										
		efficiency = 86%, Jet diameter is not to exceed one-sixth of the										
		wheel diameter. Determine:										
		i. The wheel diameter										
		ii. The number of jets required										
		iii. Diameter of the jet.										
		iv.										
Q.5	(a)											
Q. .5	(b)											
	(D)	pump.	04									
	(c)	Why governing of turbine is required? Explain governing of Pelton	07									
	(C)	why governing of turbine is required. Explain governing of renon- wheel with neat sketch.	U/									
		OR										
0.5	(0)		03									
Q.5	(a)											
	(b)	Write short note on NPSH.	04									
	(c)	Explain briefly different losses and efficiencies associated with	07									
		centrifugal pump.										
