Seat No.:	Enrolment No
	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2023

Subject Code:3141906 Date:11-07-2023

Subject Name:Fluid Mechanics and Hydraulics Machines
Time:10:30 AM TO 01:00 PM
Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

0.1			MARKS
Q.1	(a)	Define the following fluid properties: 1. Kinematic viscosity 2. Vapour pressure	03
		3. The bulk modulus of compressibility	
	(b)		04
		When detergent is mixed with water, which characteristic of water is affected?	
		How?	0.
	(c)	List out forces acting on the fluid in motion. Discuss assumptions made in	07
		Bernoulli's equation. Also, List out the limitations of Bernoulli's equation.	
Q.2	(a)	Define:	03
Q.2	(a)	1. Stream line	05
		2. Streak line	
		3. Path line	
	(b)	Write a statement of Pascal's law and hydrostatic law.	04
	(c)	Explain Raynolds experiment with proper diagrams. Distinguish between Laminar	07
		and Turbulent flow.	
	(c)	OR A shaft of 100 mm diameter moves in a sleeve of length 350 mm at a speed of 0.4	07
	(C)	m/s under the application of 250 N force in the direction of its motion. If the	07
		clearance between the shaft and sleeve is 0.08 mm, determine the dynamic viscosity	
		of the lubricating oil filled in a clearance gap.	
		If the applied force is increased to 750 N, what will be the speed of the sleeve?	
Q.3	(a)	Explain the condition of stability for floating and submerged body.	03
	(b)	Define –	04
		1. Buoyant force	
		2. Center of buoyancy	
		3. Metacenter	
	(c)	4. Metacentric height A wooden block having a horizontal cross section $600 \text{ mm} \times 600 \text{ mm}$ and height h .	07
	(6)	If floats vertically in water. Determine maximum height of the block so that it can	07
		remain in stable condition. Consider specific gravity of wood as 0.6.	
		OR	
Q.3	(a)	Define and explain circulation? What is the importance of concept of circulation?	03
	(b)	Sketch the velocity distribution and shear stress distribution across a section of the	04
,	(6)	pipe for laminar flow. Charles what her the flow of liquid given by $u = Eu$ and $u = Eu$ is (i) Continuous.	07
	(c)	Check whether the flow of liquid given by $u = 5x$ and $v = -5y$ is (i) Continuous (ii) Rotational	U/

Q.4	(a)	Write a short note on Kinetic energy correction factor.	03 04
	(b)	What is similitude? Define Geometric, Kinematic and Dynamic similarity.	
	(c)	Discharge Q of a centrifugal pump can be assumed to be dependent on density of	07
		liquid ρ , viscosity of liquid μ , pressure p , impeller diameter D and speed N in RPM.	
		Using Buckingham π -theorem, show that:	
		$Q = ND^3 \phi \left[\frac{gH}{N^2 D^2}, \frac{v}{ND} \right]$	
		OR	
Q.4	(a)	If the surface tension at air and water interface is 0.0735 N/m, what is the pressure	03
		difference between inside and outside of an air bobble of diameter 0.01 mm?	
	(b)	Write down difference between impulse and reaction Water turbines.	04
	(c)	Explain components and constructional features of Francis Turbines with neat	07
		schematic diagrams.	
Q.5	(a)	Explain cavitation for hydraulic turbines.	03
	(b)	List out and explain heads in a centrifugal pump.	04
	(c)	A jet of water of diameter 7 cm strikes a curved plate at its center with velocity of	07
		15 m/s. The curved plate is moving with a velocity of 7 m/s in the direction of the	
		jet and it is deflected through an angle of 165°. Assuming the plate to be smooth.	
		Determine: (i) Force exerted on plate in the direction of jet, (ii) Power of jet, and	
		(iii) Efficiency of jet.	
		OR	
Q.5	(a)	Define following terms for centrifugal pump:	03
		1. Manometric Efficiency	
		2. Volumetric Efficiency	
		3. Mechanical Efficiency	
	(b)	List out and explain losses in a centrifugal pump.	04
	(c)	Explain hydraulic press with schematic diagram, advantages, disadvantages and	07
		applications.	
