
GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER- V EXAMINATION-SUMMER 2023 Date: 26/06/2023 Subject Code: 3151909 Subject Name: Heat Transfer Time: 02:30 PM TO 05:00 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. (a) Give difference between free and forced convection. 03 0.1 (b) Explain the terms thermal diffusivity and thermal contact resistance. 04 (c) A mild steel tank of wall thickness 10 mm contains water at 90° C. The thermal 07 conductivity of mild steel is 50 W/m°C, and the heat transfer coefficient for inside and outside of the tank area are 2800 and 11 W/m² °C, respectively. If the atmospheric temperature is 20°C, calculate (i) The rate of heat loss per m^2 of the tank surface area. (ii) The temperature of the outside surface tank. 0.2 (a) A spherical shaped vessel of 1.2 m diameter is 100 mm thick. Find the rate of 03 heat leakage, if the temperature difference between the inner and outer surfaces is 200° C. Thermal conductivity of material is 0.3 kJ /mh°C. Write the general three dimensional heat conduction equation in 04 **(b)** Cylindrical coordinates i) ii) Spherical coordinates (c) A 12 cm diameter long bar initially at a uniform temperature of 40°C is placed in 07 a medium at 650°C with a convective co efficient of 22 W/m²K. Calculate the time required for the bar to reach 255°C. Take k = 20W/mK, $\rho = 580$ kg/m³ and c = 1050 J/kg K.OR A motor body is 360 mm in diameter (outside) and 240 mm long. Its surface 07 (c) temperature should not exceed 55 °C when dissipating 340 W. Longitudinal fins of 15 mm thickness and 40 mm height are proposed. The convection coefficient is 40W/m² °C. Determine the number of fins required. Atmospheric temperature is 30°C. Take thermal conductivity = $40 \text{ W/m}^{\circ}\text{C}$. 0.3 (a) Explain Displacement thickness, Momentum thickness and Energy thickness. 03 Differentiate between steady state and transient heat conduction and give some 04 **(b)** examples of unsteady state heat conduction. For natural convection heat transfer, show that $Nu = C (Pr^n, Gr^m)$. 07 (c) OR Define radiation. State the range of wavelengths for ultraviolet, visible and 03 **Q.3 (a)** thermal radiations. Discuss the significance of Prandtl, Nusselt and Stanton numbers in convection. 04 **(b) (c)** Define and discuss velocity boundary layer and thermal boundary layer over a 07

flat plate. Show the thickness of thee layers for different Prandtl numbers.

- Q.4 (a) Explain the terms absorptivity, reflectivity and transmissivity of radiant energy. 03
 - (b) The filament of a 75 W light bulb may be considered as a black body radiating 04 into a black enclosure at 70° C. the filament diameter is 0.10 mm and length is 5 cm. Considering the radiation, determine the filament temperature .
 - (c) State and prove Kirchhoff's law.

0.4 (a) Calculate the shape factor for cylindrical cavity shown in Fig. 1 with respect to itself. **03**

- (b) Define Heat exchanger. Give classification of heat exchangers. 04
- (c) Define intensity of radiation and show that for a unit surface the intensity of 07 normal radiation is $1/\pi$ times the total emissive power.

Q.5	(a)	What do you understand by fouling factor in case of heat exchanger? List the	03
		causes of fouling.	
	(b)	Define and explain types of condensation.	04

(c) What is boiling? Explain different regimes of boiling. 07

OR

Q.5	(a)	What do you understand by TEMA charts? How a	re they useful in the design of	03
		multi-pass heat exchangers.		

- (b) Differentiate between pool boiling and forced convection boiling. 04
- (c) Derive LMTD formula for counter flow heat exchanger. 07

07