Seat No.:	Enrolment No.
Deat 110	

Subject Name: Chemical Engineering Thermodynamics

Subject Code: 3350505

GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING - SEMESTER -V EXAMINATION - WINTER - 2017

Date: 14-11-2017

Time:	10:30	am to 01:00 pm Total Marks: 70	
Instruc	tions:		
1.		npt all questions.	
2. 3.		Suitable assumptions wherever necessary. es to the right indicate full marks.	
4.	_	f programmable & Communication aids are strictly prohibited.	
5. 6.		f only simple calculator is permitted in Mathematics. sh version is authentic.	
υ.	Engn	sir version is authentic.	
Q.1		Answer any seven out of ten. દશમાંથી ક્રોઇપણ સાતના જવાબ આપો.	14
	1.	Define heat capacity and give its unit.	
	٩.	હીટ કેપેસીટી ની વ્યાખ્યા એકમ સાથે લખો. 👚 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮 💮	
	2.	Write statement of zeroth and first law of thermodynamics.	
	٤.	થમોડાયનેમિક્સનો ઝીરોથ તથ પ્રથમ મનયમ લખો.	
	3.	Write value of Temperature and Pressure of triple point of water.	
	3.	પાણી ના ટ્રીપલ પોઈન્ટ નું તાપમાન અને પ્રેસર લખો.	
	4.	Define state and path function with one example each.	
	٧.	State અને path function ની વ્યાખ્યા એક ઉદાહરણ સાથે લખો.	
	5.	Differentiate between Work and Energy.	
	Ч.	Work and Energy નો તફાવત આપો.	
	6.	Write equation of work done for an ideal gas in adiabatic process.	
	۶.	Adiabatic p <mark>rocess</mark> માં આદર્શવાયુ માટે કાર્ચ નું સુત્ર લખો.	
	7.	Write the any two virial equations for real gas behavior.	
	૭.	રીયલ ગેસ બીફેવીયર માટે કોઈ પણ બે વિરિયલ સુત્ર લખો.	
	8.	Give Kelvin-Plank statement for second law of thermodynamics.	
	۷.	Second law of thermodynamics માટેKelvin-Plank statement આપી.	
	9.	Define Constant Pressure process	
	E.	Constant Pressure process વ્યાખ્યાચિત કરો.	
	10.	What is compressibility factor?	
	٩٥.	Compressibility factor शुं छे?	
Q.2	(a)	Explain phase rule.	03
પ્રશ્ન. ર	(엔)	ફેઝ રુલ સમજાવો.	03
		OR	
	(a)	Explain Hess's law of constant heat summation.	03
	(엔)	Hess's law of constant heat summation સમજાવી.	03
	(b)	A system contains 10 kg of a gas. During a process 15 kJ work is done on the system and 35 kJ heat is rejected from the system. Find change of specific internal energy of the system.	03

	(બ)	એક પ્રણાલી 10 કીલો વાયુ ધરાવેછે .પ્રક્રીયા દરમીયાન15 kJ જેટલુ કાર્ય પ્રાણાલી	О3
		ઉપર કરવામા આવે છે અને 35kJ જેટલી ઉષમા ફેકવામા આવેછે તો change of	
		Specific internal energy શોધો.	
		OR	
		(b) A closed system executes adiabatic process due to which a change energy takes place. A work of 15 kJ is done by the system on surroundi during this process. Determine change of specific internal energy of the if system contains mass of 0.5 kg.	ngs
	(બ)	એક બંધપ્રાણાલી એડીયાબેટીક પ્રક્રીયા કરે છે ત્યારે આંતરિક ઉષ્મા મા ફરફાર થાય	O3
		છે .આ પ્રક્રીયા દરમીયાન 20 kJ જેટલું કાર્ય પ્રણાલી દ્વારા વાતાવરણમાં થાય છે .	
		જોપ્રણાલી0 . 5કીલો માસ ધારવે તો change of specific internal energy શોધો.	
	(c)	What is the change in entropy when 2 kg of an ideal gas at 277 K is heated at constant volume to a temperature of 368 K? Take Cv = 1.42 kJ/kg K	04
	(8)	જો 2 kg આદર્શ વાયયુ 227 K થી 368 K સુધી અયળ કદે ગરમ કરવવામાં	OA
		આવેતો change in entropy શોધો. Cv = 1.42 kJ/kg K લો.	
	(d)	If a system expands from 500 lit to 1500 lit volume at constant pressure of 9 x 10^5 N/m ² , find boundary work during the process.	04
	(5)	જો કોઇ મસસ્ટ્રમ ન કદ 500 lit થી 1500 lit અંચળ દબ ણ 9 x 10 ⁵ N/m ²	OA
		વીસ્ટતરણ થ ય છે તો તેન પ્રકીય દરમ્ય ન boundary work શોધો	
	(d)	Calculate standard heat of reaction at 25^{0} C of the following reaction Na ₂ CO _{3 (s)} + Fe ₂ O _{3 (s)} $^{\square}$ Na ₂ O.Fe ₂ O _{3 (s)} + CO _{2 (g)} , using following data Standard heat of formation of Na ₂ CO _{3 (s)} = -1130.68 kJ/mol Standard heat of formation of Fe ₂ O _{3 (s)} = -817.3 kJ/mol Standard heat of formation of Na ₂ O.Fe ₂ O _{3 (s)} = -1412.2 kJ/mol Standard heat of formation of CO _{2 (g)} = -393.51 kJ/mol	04
	(\$)	25^{0} C એ $Na_{2}CO_{3(s)} + Fe_{2}O_{3(s)}$ $^{\square}$ $Na_{2}O.Fe_{2}O_{3(s)} + CO_{2(g)}$ of standard heat of	OA
		reaction શોધો	
	~	Standard heat of formation of $Na_2CO_{3 (s)} = -1130.68 \text{ kJ/mol}$ Standard heat of formation of $Fe_2O_{3 (s)} = -817.3 \text{ kJ/mol}$ Standard heat of formation of $Na_2O.Fe_2O_{3 (s)} = -1412.2 \text{ kJ/mol}$ Standard heat of formation of $CO_{2 (g)} = -393.51 \text{ kJ/mol}$	
Q.3	(a)	Explain Carnot cycle.	03
પ્રશ્ન. 3	(왠)	Carnot cycle સમજાવો.	03
	(a)	OR If a Carnot engine receives heat at 600 K and rejects heat at 400 K, what is its thermal efficiency?	03
	(엔)	જો Carnot engine 600 K એ ઉષમા મેળવે અને400 K એ ફેંક છે .તો તેની thermal	03
		efficiency શોધો ?	
	(b)	Explain Clausius statement for second law of thermodynamics.	03
	(બ)	Second law of thermodynamics માટેClausius statement સમજાવી.	О3
	(b)	OR Write a note on thermodynamic temperature scale.	03
		<u> </u>	-, •

	(બ)	Thermodynamic temperature scale પર ટાક નાધ લખા	03
	(c)	Draw the neat sketch of turbine system and show boundary and state type of system.	04
	(8)	Turbine system ની સ્ટવચ્છ આક્રુતી દોરો, તેની સીમા બતાવો અનેપ્રણાલીના	00
	` '	પ્રકાર લખો.	
		OR	
	(c)	Explain open, closed system with reversible and irreversible process.	04
	(8)	સમજાવો open system, closed system, reversible and irreversible	OX
	(d)	process What is the change in entropy when 1 mol of an ideal gas at 335 K and 10 bar is expanded irreversibly to 300 K and 1 bar? Take Cp = 29.3 J/mol K, R=8.314 J/mol K	04
	(5)	જો 1 mol આદશશવાય 335 K અને 10 bar થી 300 K and 1 bar સધી	OX
		irreversibly	
		expand થાય તો change in entropy શોધો? Cp = 29.3 J/mol K અનેR=8.314	
		J/mol K લી.	
		OR	
	(d)	Calculate entropy change of evaporation of dry saturated steam at 500 kPa and 425 K, Latent heat of vaporization is 2106 KJ/Kg	04
	(5)	ડ્રાઈ સેચ્યુરટેડ વરાળ માટે એં <mark>ટરોપી ચેંજ</mark> શોધો, જ્યારે પ્રેશર 500 kPa અને	٥٨
		તાપમાન 425 કે હોય.	
Q.4	(a)	Write the limitations of first law of thermodynamics.	03
પ્રશ્ન. ૪	(왠)	First law of ther <mark>modyna</mark> mics ની મચાશદાઓ લખો.	03
	(a)	OR	02
	(a) (신)	What is Clausius inequality? Clausius inequality ยู่ ยิ?	03
	(b)	Draw the Sketch of Heat engine and Heat pump and explain them.	04
	(બ)	Heat engine અને Heat pump ની સ્વચ્છ આકૃતિ દોરી વર્ણવો.	08
	()	OR	
	(b)	Write a note on Compressibility charts.	04
	(બ)	Compressibility charts વીશે ટુંક નોંધ લખો	OX
	(c)	For an ideal gas, derive PV^{γ} = constant for adiabatic process.	07
	(8)	Ideal gas માટે, adiabatic process માટે PV^{γ} = constant તારવી.	೦೨
Q.5	(a)	Prove $Cp - Cv = R$ for an ideal gas from the definition of enthalpy.	04
પ્રશ્ન. પ	(생)	Enthalpy ની વ્યાખ્યા ઉપરથી Ideal gas માટે $\mathbf{Cp} - \mathbf{Cv} = \mathbf{R}$ તારવો.	OX
	(b)	Derive equation for first law of thermodynamic for flow process.	04
	(બ)	First law of thermodynamic મા flow process માટેનું સમીકરણ તારવો.	٥४
	(c)	Using Hess's law, calculate heat of formation of Benzoic acid crystals (C ₇ H ₆ O ₂) at 25 ⁰ C using following data:	03
		Standard heat of formation of CO2 (g) = -393.51 kJ/mol	

(8)	Hess's law નો ઉપયોગ કરી, Benzoic acid crystals (C7H6O2) ની heat of	03
	Formation 25ºC એ નીચેનીમાફીતી નો ઉપયોગ કરી ગણો.	
	Standard heat of formation of CO2 (g) = -393.51 kJ/mol	
	Standard heat of formation of H2O (l) = -285.83 kJ/mol	
	Standard heat of combustion of C7H6O2 = -3226.95 kJ/mol	
(d)	Explain PVT behavior of pure fluids.	03
(\$(સુધ્ધુ પ્રવાહી માટે PVT વર્તણૂક સમજાવો.	03

Standard heat of formation of H2O (1) = -285.83 kJ/mol
