Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING - SEMESTER - 3 EXAMINATION - WINTER - 2017

Subject Code:3331902 Date: 09-11-2017

Subject Name: Thermodynamics

Time: 10:30 am to 01:00 pm Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of only simple calculator is permitted in Mathematics.
- 6. English version is authentic.

Q.1 Answer any seven out of ten. દશમાંથી કોઇપણ સાતના જવાબ આપો.

14

- 1. Define entropy and write its S.I Unit.
- ૧. એંન્ટ્રોપીની વ્યાખ્યા આપી તે નો એ.સ આઈ એકમ લખો.
- 2. Explain isolated system with suitable example.
- ર. આઈસોલેટેડ સિસ્ટ્રમ ઉદાહરણ આપી સમજાવો
- 3. Write the unit of Universal gas constant (Ru) and show the relationship between Universal gas constant (Ru) and characteristic gas constant (R).
- 3. યુનિવર્સલ ગેસ અયળાંક નો એકમ લખો. અને તેનો લાક્ષણિક વાયુ અયળાંક સાથેનો સંબધ સુત્ર દ્વારા દર્શાવો.
- 4. Which of the following does not change during a throttling process?
- ૪. થ્રોટલિંગ પ્રોસેસ દરમિયાન શુ બદલાતુ નથી ?
- 5. Which law of thermodynamics gives the basic of temperature measurement? Also state that law of thermodynamics.
- પ. થર્મોડાયનેમિક્સ નો કયો નિયમ તાપમાનનુ માપન આપે છે? તે નિયમ લખો.
- 6. What do you understand by extensive property? Give two examples of extensive property.
- s. એક્સ્ટેંનસીવ પ્રોપર્ટી એટ્લે શુ? તેના બે ઉદાહરણ આપો.
- 7. Draw P-V and T-S diagram of Dual cycle.
- ૭. ડ્યુઅલ સાયકલ પી-વી અને ટી-એસ ડાયાગ્રામ ધ્વારા દર્શાવો.
- 8. Write the equation of thermal efficiency of Brayton cycle and where it is used?
- ૮. બ્રેટોન સાયકલ ની ઉષ્મિય દક્ષતાનુ સુત્ર લખો. અને તે કયા વપરાય છે?
- 9. Find the efficiency of Carnot engine operating between the source temperature of 200°c and the sink temperature of 40°c.
- ૯. કાર્નોટ એંજિન માં સોર્સ તાપમાન 200° સે. તથા સિંક તાપમાન 40° સે છે. તો તેની ઉષ્મિય દક્ષતા શોધો.
- Find the ratio of specific heats and Gas characteristic constant if specific heat at const pressure = 0.987KJ/KgK and specific heat at const volume= 0.73KJ/KgK.
- ૧૦. સ્પેસીફીક હીટ અયળ દબાણે =987KJ/KgK અને સ્પેસીફીક હીટ અયળ કદે

=0.73KJ/KgK. જો હોય તો સ્પેસીફીક હીટનો ગુણોત્તર અને લાક્ષણિક વાયુ અયળાંક શોધો.

Q.2	(a)	Apply steady flow energy equation to boiler.	03
પ્રશ્ન. ર	(અ)	સ્ટેડી ફ્લો એંનર્જી સમીકરણ બોઈલર માટે તારવો.	03
	(-)	OR	02
(a)		Apply steady flow energy equation to turbine. સ્ટેડી ફ્લો એંનર્જી સમીકરણ ટરબાઈન માટે તારવો.	03
	(અ)	·	
	(b)	Explain concept of PMM-1 and PMM-2 પીએમ.એમ 1 તથા પી.એમ. એમ 2 નો કોંનસેપ્ટ સમજાવો.	03
	(બ)		03
	(b)	OR State and explain limitation of first law of thermodynamics.	03
	(ઇ) (બ)	થર્મોડાયનેમિક્સના પ્રથમ નિયમ તથા મર્યાદા લખી સમજાવો.	03
	(c)	Derive an equation of work done for isentropic process.	04
	(8)	આઈસેંન્ટ્રોપિક પ્રક્રિયા માટે વર્ક ડન નુ સમીકરણ તારવો.	08
	(5)	OR	08
	(c)	Derive an equation of work done for isothermal process.	04
	(§)	અયળ તાપમાન પ્રક્રિયા માટે વર્ફ ડન નુ સમીકરણ તારવો.	08
	(d)	Air of volume 0.1 m ³ and pressure 1.5 bar absolute is expanded up to volume	04
	(u)	0.5 m ³ isothermally. Find its final pressure and heat transfer during the process.	••
	(S)	હવાને 1.5 બાર દબાણથી અને $0.1~\mathrm{m}^3$ કદથી અચળ તાપમાને $0.5~\mathrm{m}^3$ સુધી	٥٧
		વિસ્તરણ કરવામાં આવે છે. તો અંતિમ દબાણ તથા પ્રક્રિયા દર્મિયાન ઉષ્મા	
		વિનિમય શોધો.	
		OR	
	(d)	Classify the system boundaries and give two examples of each type.	04
	(S)	પ્રણાલી ની બાઉંન્દ્રી ને વર્ગીકૃત કરી દરેક ના બે ઉદાહરણ આપો.	08
	•		0.0
Q.3	(a)	State boyle's, charle's and Gay Lussac law.	03
પ્રશ્ન. 3	(અ)	બ <mark>ોઈલ્સ,ચાલ્</mark> સ તથા ગેલ્યુસેક નો નિચમ લખો	03
		OR	
	(a)	Derive generalized steady flow energy equation.	03
	(અ)	જનરલ સ્ટેડી ફ્લો એનર્જી સમીકરણ તારવો.	03
	(b)	Draw P-V dia and T-S diagram for hyperbolic process.	03
	(બ)	હ્મયપરબોલિક પ્રોસેસ માટે પી-વી અને ટી એસ ડાયાગ્રામ દોરો.	03
	` •	OR	
	(b)	Draw P-V dia and T-S diagram for isochoric process.	03
	(બ)	આઈસોકોરિક પ્રક્રિયા માટે પી-વી અને ટી એસ ડાયાગ્રામ દોરો.	03
	(c)	A heat engine takes 500 KJ/cycle heat from heat source. If COP of	04
		refrigerator, working between same two heat reservoirs is 0.4 then find out	
		1) Heat rejected by heat engine 2) thermal efficiency of heat engine.	OX
	(8)	એક ઠીટ એંજિન 500 KJ/cycle ઠીટ સોર્સ માથી મેળવે છે. જો રેફ્રીજરેટર નો	
		સી.ઓ.પી 0.4 હોય તો 1) હીટ એંજિન દ્વારા રીજેકટ થતી ગરમી 2) એંન્જિન	

	(c) (§)	Derive an equation of change in entropy for reversible cycle. રિવર્સીબલ સાયકલ માટે એંન્ટ્રોપીનુ સુત્ર તારવો.	04 08
	(d)	1 kg of air is at 15 bar absolute pressure and 980°C. It is expanded upto 2.5 bar absolute pressure by isentropic process. Find (a) Final volume (b) Final temperature (c) workdone . Take $R=0.287~KJ/kg~K$ and $\gamma=1.4$	04
	(5)	એક કિગ્રા હવાને 15 બાર દબાણ અને 980°સે તાપમાન થી 2.5 બાર દબાણ	OX
		સુધી આઈસેન્ટ્રોપીક પ્રક્રિયા દ્વારા વિસ્તરણ કરવામાં આવે છે. તો 1) અંતિમ કદ	
		2) અંતિમ તાપમાન 3) કાર્ચશોધો. R=0.287 KJ/kg K and γ = 1.4 લો. OR	
	(d)	State the Kelvin plank and Clausis statement for second law of thermodynamics. Also represent them with diagram.	04
	(S)	કેલ્વીન પ્લાન્ક અને ક્લાઉસીસ નુ વિધાન થર્મોડાયનેમિક્સના બીજા નિયમ	OX
		માટે લખો અને તેનુ ડાયાગ્રામ દ્વારા પણ નિરુપણ કરો.	
Q.4	(a)	Explain the importance of Entropy in thermodynamics.	03
પ્રશ્ન. ૪	(અ)	એંન્ટ્રોપી નુ થર્મોડાયનેમિક્સમાં મહત્વ સમજાવો.	03
		OR	
	(a)	List the causes that make the process irreversible one.	03
	(અ)	પ્રક્રિયાને ઈર રિવર્સીબલ બનાવનાર <mark>કારણો</mark> લખો.	03
	(b)	Compare Otto cycle and diesel for constant compression ratio.	04
	(બ)	ઓટો અને ડીઝલ સાયકલ અચળ કોમ્પ્રેસન ગુણોત્તરની સાપેક્ષે સરખાવો.	OX
	(b)	OR Deduce the equivalence between Kelvin-plank and clausius statements at second law of thermodynamics on the basis of diagrammatic representation	04
	(બ)	થર્મોડાયનેમિક્ <mark>સના બ</mark> ીજા નિયમ માટે કેલ્વીન પ્લાન્ક અને ક્લાઉસીસ ના	٥x
		વિધાન વચ્ચેની સામ્યતા આક્રુતિ દોરી સમજાવો.	
	(c)	Derive an expression for air standard efficiency of diesel cycle in terms of compression ratio and cut off ratio.	07
	(8)	ડીઝલ સાયકલ માટે એર સ્ટાન્ડ૨ડ એફીસીયન્સી માટેનુ સુત્ર કોમ્પ્રેસન રેશીયો	೦೨
	\wedge	અને ક્ટ ઓફ રેશીયોના સ્વરુપમાં તારવો.	
Q.5	(a)	For a engine working on Otto cycle, pressure at the starting of compression process is 1 bar and at the end of compression process is 12 bar. If $\gamma = 1.4$ Find the value of compression ratio and thermal efficiency.	04
પ્રશ્ન. પ	(અ)	ઓટો સાચકલ પર કામ કરતા એંજિનમાં કોમ્પ્રેસનની શરુઆત માં 1 બાર	٥٧
		દબાણ અને અંતિમ માં 12 બાર દબાણ છે. જો $\gamma = 1.4$ હોય તો કોમ્પ્રેસન	
		રેશીયો અને ઉષ્મીય દક્ષતા શોધો.	
	(b)	One gas turbine works on Brayton cycle between 5 bar and 1 bar pressure. Find air standard efficiency. Take $\gamma = 1.4$	04
	(બ)	બ્રેટોન સાયકલ પર કામ કરતા ગેસ ટર્બાઈન 5બાર અને એક બાર પ્રેસર પર	٥٨
		શામ કરે છે. તો એર સ્ટાર્જ્ડ એ દીમીઈન્સી ગોદો	

(c)	Explain C.O.P of Refrigerator and heat pump show their relationship.	03
(8)	રેફ્રીજરેટર અને હીટ પમ્પ નો સી.ઓ.પી સમજાવો. તથા તેમની વચ્ચેનો સંબધ	03
	દર્શાવો.	
(d)	Give two examples of power producing and power consuming cycles.	03
(S)	પાવર ઉત્પન્ન કરનારી તથા પાવર વાપરતી સાયકલ ના બે ઉદાહરણ આપો.	03