GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- III EXAMINATION – WINTER 2018 Subject Code: 4639301 Date: 02-01-2019			19
Su Tii Ins	bject me: 1 tructio 1. 2. 3.	 Name: Basic Mathematics 0.30 am to 1.00 pm Total Marks: 7 ons: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	0
Q.1	(a)	 Give definition of the following terms: 1) Singleton set 2) Intersection of two sets 3) Transpose of a Matrix 4) Existential Quantifiers 5) Symmetric Relation 6) Complete Graph 7) Pendent vertex 	07
	(b)	(1) For $A = \{2, 3, 4, 5, 6\}, B = \{3, 4, 5, 6, 7\}, C = \{4, 5, 6, 7, 8\}$ find a) $(A \cup B) \cap (A \cup C)$ b) $(A \cap B) \cup (A \cap C)$ (2) If $A = \{2,3\} B = \{3,4\} C = \{2,4\}$ Find (i) $(A \times B) \cup (A \times C)$ (ii) $(A \times B) \cap (A \times C)$	07
Q.2	(a) (b)	$(p \rightarrow (q \lor r)) \land ((q \rightarrow p) \land (p \lor r))$ prepare the truth table. Test the validity of the logical consequences: All dogs fetch. Ketty does not fetch. Therefore, Ketty is not a dog	07 07
	(b)	In a competition, a school awarded medals in different categories. 36 medals in dance, 12 medals in dramatics and 18 medals in music. If these medals went to a total of 45 persons and only 4 persons got medals in all the three categories, how many received medals in exactly two of these categories?	07
Q.3	(a)	Explain contradiction method and using it prove that $\sqrt{6}$ is an irrational number	07
	(b)	Compute, A \lor B, A \land B, A ^T ,B ^T ,AB $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	07
03	(a)	OR Let $X = \{1, 2, 3, 4, 5\}$ $R = \{\langle x, y \rangle \mid x \text{ is divisible by } y \}$ Draw a graph of R and also	07
X •0	(u) (h)	give its matrix. Check whether the given relation an equivalence relation? 1 1 1 1 1 1	07

(b) $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$ **07**

1

Q.4 (a) Let $f: R \to R$ and $g: R \to R$ where R is the set of real numbers. Find fog and gof where $f(x) = x^2 - 2$, g(x) = x + 4 State whether these functions are injective, surjective, and bijective.

(b) Let $X = \{1,2,3,4,5\}$ and R,S,T be the relation as follows: $R = \{(x,y)/x+y=5\}$ $S = \{(1,2),(3,4),(2,2)\}T = \{(4,2),(2,5),(3,1),(1,3)\}$ (i) Write properties of *R*. (ii) Write matrix of *R*.(iii) Find *S* o*T*, *R* o *S* and *S* o *R*.

- **Q.4** (a) Define Tautology and Contradiction with examples. Prove that $P \rightarrow (P \lor Q)$ is tautology without constructing truth table. 07
 - (b) List all possible functions from $X = \{a, b, c\}$ to $Y = \{0, 1\}$ and indicate in each case 07 whether the function is one-to-one, is onto, and is one-to-one onto.
- Q.5 (a) Define Strong, unilateral, week component. Also Find Strong, unilateral, week 07 component from the given digraph.

(b) Define adjacency matrix of a graph and obtain the adjacency matrix (A) for the following graph. State the in degree and out degree of all the vertices. Find A², B₂ and Path matrix P.

- Q.5 (a) Define Tree. Give three different representation of the given tree. (v0(v1(v2)(v3)(v4))(v5(v6)(v7)(v8)(v9))(v10(v11)(v12))).
 - (b) Define: Isomorphic Graph. State whether the following graphs are isomorphic 07 or not: 07

07