\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER- III EXAMINATION - WINTER 2018

Subject Code: 4639301
Date: 02-01-2019
Subject Name: Basic Mathematics
Time: 10.30 am to $1.00 \mathbf{~ p m}$
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Give definition of the following terms:
1) Singleton set
2) Intersection of two sets
3) Transpose of a Matrix
4) Existential Quantifiers
5) Symmetric Relation
6) Complete Graph
7) Pendent vertex
(b) (1) For $\mathrm{A}=\{2,3,4,5,6\}, \mathrm{B}=\{3,4,5,6,7\}, \mathrm{C}=\{4,5,6,7,8\}$ find
a) $(A \cup B) \cap(A \cup C)$ b) $(A \cap B) \cup(A \cap C)$
(2) If $A=\{2,3\} B=\{3,4\} \quad C=\{2,4\}$

Find (i) (A X B) U (A X C)
(ii) $(\mathrm{AXB}) \cap(\mathrm{AXC})$
Q. 2 (a) $(p \rightarrow(q \vee r)) \wedge((q \rightarrow p) \wedge(p \vee r))$ prepare the truth table.
(b) Test the validity of the logical consequences:

All dogs fetch.
Ketty does not fetch.
Therefore, Ketty is not a dog

OR

(b) In a competition, a school awarded medals in different categories. 36 medals in dance, 12 medals in dramatics and 18 medals in music. If these medals went to a total of 45 persons and only 4 persons got medals in all the three categories, how many received medals in exactly two of these categories?
Q. 3 (a) Explain contradiction method and using it prove that $\sqrt{6}$ is an irrational number.
(b) Compute, $\mathrm{A} \vee \mathrm{B}, \mathrm{A} \wedge \mathrm{B}, \mathrm{A}^{\mathrm{T}}, \mathrm{B}^{\mathrm{T}}, \mathrm{AB}$
$A=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

OR

Q. 3 (a) Let $X=\{1,2,3,4,5\} \quad R=\{\langle x, y\rangle \mid x$ is divisible by $y\}$. Draw a graph of R and also
give its matrix. Check whether the given relation an equivalence relation?
(b) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots \ldots .+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$
Q. 4 (a) Let $f: R \rightarrow R$ and $g: R \rightarrow R$ where R is the set of real numbers. Find fog and gof where $f(x)=x^{2}-2, g(x)=x+4$ State whether these functions are injective, surjective, and bijective.
(b) Let $\mathrm{X}=\{1,2,3,4,5\}$ and $\mathrm{R}, \mathrm{S}, \mathrm{T}$ be the relation as follows: $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}+\mathrm{y}=5\}$
$\mathrm{S}=\{(1,2),(3,4),(2,2)\} \mathrm{T}=\{(4,2),(2,5),(3,1),(1,3)\}$ (i) Write properties of R.
(ii) Write matrix of R.(iii) Find $S \circ T, R \circ S$ and $S \circ R$.

OR

Q. 4 (a) Define Tautology and Contradiction with examples. Prove that $\mathrm{P} \rightarrow(\mathrm{P} \vee \mathrm{Q})$ is tautology without constructing truth table.
(b) List all possible functions from $X=\{a, b, c\} t o Y=\{0,1\}$ and indicate in each case whether the function is one-to-one, is onto, and is one-to-one onto.
Q. 5 (a) Define Strong, unilateral, week component. Also Find Strong, unilateral, week component from the given digraph.

(b) Define adjacency matrix of a graph and obtain the adjacency matrix (A) for the following graph. State the in degree and out degree of all the vertices. Find $\mathrm{A}^{2}, \mathrm{~B}_{2}$ and Path matrix P.

Q. 5 (a) Define Tree.

Give three different representation of the given tree. ($\mathrm{v} 0(\mathrm{v} 1(\mathrm{v} 2)(\mathrm{v} 3)(\mathrm{v} 4))(\mathrm{v} 5(\mathrm{v} 6)(\mathrm{v} 7)(\mathrm{v} 8)(\mathrm{v} 9))(\mathrm{v} 10(\mathrm{v} 11)(\mathrm{v} 12))$).
(b) Define: Isomorphic Graph. State whether the following graphs are isomorphic or not:

