\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER- III EXAMINATION - WINTER 2019

Subject Code: 4639301
Date: 17/12/2019

Subject Name: Basic Mathematics

Time: 10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Give definition of the following terms:
i) Union of two sets
ii) Symmetric Matrix
iii) Complete Graph
iv) Modus Tollens
v) Transitive Property of a Relation
vi) Domain of a function
vii) Binary Tree
(b) Define Tautology. Show that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology without using the Truth Table.
Q. 2 (a) (I) Verify the validity of the following arguments:
"All men are mortal. Socrates is a man. Therefore, Socrates is mortal".
(II) Let $A=\{0,2,4,6,8,10\} \quad, \quad B=\{0,1,2,3,4,5,6\} \quad$ and 03
$C=\{4,5,6,7,8,9,10\}$. Find (i) $(A \cup B) \cap C$ (ii) $(A \cup B) \cup(A \cap C)$ (iii) $(A \cap B) \cup(A \cap C)$
(b) Using truth table and logical equivalences show that $\neg(p \vee(\neg p \wedge q))$ and $\mathbf{0 7}$ $\neg p \wedge \neg q$ are logically equivalent.

OR

(b) Define Relation on a set. For each of these relations on the set $\{1,2,3,4\}, 07$ decide whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.
(i) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$ (ii) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
(iii) $\{(2,4),(4,2)\}$ (iv) $\{(1,2),(2,3),(3,4)\}$ (v) $\{(1,1),(2,2),(3,3),(4,4)\}$
(vi) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$
Q. 3 (a) Give a direct proof of the theorem "If n is an odd integer, then n^{2} is odd." $\mathbf{0 7}$
(b) Define the transpose of a Matrix. Consider the given matrix as A. Find the $\mathbf{0 7}$ product of the matrix. i.e. A^{2}
$\left[\begin{array}{ccc}7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right]$

OR

Q. 3 (a) Use the Principal of Mathematical Induction to prove : $\mathbf{0 7}$ $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for the positive integer n .
(b) Define gcd and lcm of integers. What is the gcd and lcm of 92928 and $\mathbf{0 7}$ 123552.
Q. 4 (a) Define one-one, Onto function. Let f and g be the functions from the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 x+2$. What is the composition of function f and g ? What is the composition of g and f ?
(b)

Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
Find (i) $A \vee B$ (ii) $A \wedge B$ (iii) $A \odot B$

OR

Q. 4 (a) Define directed graph. Draw the directed graph for each of the following relations on the set $\{1,2,3,4\}$:
(i) $\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$ (ii) $\{(1,1),(1,4),(2,2),(3,3),(4,1)\}$
(iii) $\{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$ (iv) $\{(2,4),(3,1),(3,2),(3,4)\}$
(b) Define graph isomorphism. Determine whether the graphs G and H shown below are isomorphic.

u_{4}
u_{3}

V5 V4
Q. 5 (a) For the given graph below find in-degree and out-degree of each vertex and also find the given adjacency matrix. Using this adjacency matrix, find total no. of path of length 1 and 2 between each vertex.

(b) Define Strong, Unilateral and Weak component. Also find Strong, Unilateral and Weak component from the given digraph

Q. 5 (a) Define Binary Tree. Draw the subgraph of tree represented by:
$(\mathrm{A}(\mathrm{B}(\mathrm{C}(\mathrm{D})(\mathrm{E}))(\mathrm{F}(\mathrm{G})(\mathrm{H}(\mathrm{J}))))(\mathrm{K}(\mathrm{L})(\mathrm{M}(\mathrm{N})(\mathrm{P}(\mathrm{Q})(\mathrm{R})))))$
Obtain a binary tree corresponding to it.
(b) Write the order of nodes for the tree mentioned in above example (OR:Q5(a)) if it is traversed in
(i) preorder (ii) inorder (iii) postorder

