\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- V• EXAMINATION - WINTER 2020

Subject Code:4659301
 Subject Name:Design \& Analysis of Algorithms
 Time:10:30 AM to 12:30 PM
 Instructions:

Date:01/01/2020
Total Marks: 56

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks

Q. 1 (a) Define the following questions:
i. Define complexity of algorithms.
ii. Write 3 steps involved in Divide and conquer approach for problem solving.
iii. List characteristics of Greedy algorithm.
iv. Sort all the functions below in increasing order of asymptotic (big-O) growth.
a) $\mathrm{O}(n)$
b) $\mathrm{O}\left(\log _{2} n\right)$
c) $\mathrm{O}(n!)$
d) $\mathrm{O}\left(2^{n}\right)$
e) $\mathrm{O}\left(n^{2}\right)$
f) $\mathrm{O}(1)$
v. State Principle of optimality.
vi. List problems that can be solved using more than one approach. vii. Write limitation of Branch and Bound approach.
(b) Explain use of Divide and conquer technique for Binary search method. State its best, average and worst case complexity. Apply binary search algorithm and find the element $x=31$ in the following array. $10,15,18,26,27,31,38,45,59$
Q. 2 (a) Explain Asymptotic notation.
(b) Explain multiplying large integer problem and its analysis using Divide and 07 Conquer approach with example.
Q. 3 (a) Define MST. Explain Prim's algorithm to find MST for the given graph.

$\begin{array}{lll}\text { (b) Explain fractional knapsack problem. Design and analyze algorithm for knapsack } & \mathbf{0 7} \\ & \text { problem using greedy approach. } & \mathbf{0 7}\end{array}$
Q. 4 (a) Design and analyze Dijkstra's Algorithm for finding shortest path. 07
(b) Describe Job sequencing problem. Find optimal solution for the given jobs $\mathbf{0 7}$ (A,B,C,D,E) having deadline ($2,1,2,1,3$) and profit ($100,19,27,25,15$) respectively.
Q. 5 (a) Explain coin change problem. Solve coin change problem using dynamic $\begin{aligned} & \text { programming where coin denominations are }(1,4,7) \text { and amount to pay is } 9 \text {. }\end{aligned}$
(b) Explain Travelling salesman problem using branch and bound technique with $\mathbf{0 7}$
example.
Q. 6 (a) Find Longest Common Subsequence of given two strings using Dynamic 07 Programming. S1=abbacdcba S2=bcdbbcaa
(b) Describe Rod cutting problem. Find the most profitable way of cutting the rod having length $\mathrm{n}=5$ where price for length $\mathrm{Li}(1,2,3,4,5)$ are $\mathrm{Pi}(1,5,8,9,10)$.
Q. 7 (a) Define N-Queen problem. Explain 4-queens solution using backtracking approach. 07
(b) Explain P, N, NP-Hard and NP-Complete problems. $\mathbf{0 7}$
Q. 8 (a) Explain search and traversal using Depth first search with example. 07
(b) Explain 8-puzzle problem using branch and bound approach. $\mathbf{0 7}$

