ENROLLMENT NO :

SEAT NO:

GUJARAT TECHNOLOGICAL UNIVERSITY MCA- SEMESTER V – EXAMINATION – WINTER 2020

Subject Code: 4659310

Date: 05/01/2021

Subject Name: Operation Research Time:10.30 am to 12.30 pm Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.

Q-1(A) (A) **Define the Follwing**

- 1. Operation Research
- 2. Feasible Solution
- 3. Degeneracy in Transportation problem
- 4. Free Float
- 5. Saddle Point
- 6. Artificial Variables
- 7. Unrestricted Variables
- (B) A company is producing a single product and selling it through five agencies (07) situated in different cities. All of a sudden, there is a demand for the product in five more cities that do not have any agency of the company. The company is faced with the problem of deciding on how to assign the existing agencies to dispatch the product to the additional cities in such a way that the travelling distance is minimized. The distances (in km) between the surplus and deficit cities are given in the following distance matrix.

Define City Surplus City	Ι	II	III	IV	V
A	160	130	175	190	200
В	135	120	130	160	175
С	140	110	155	170	185
D	50	50	80	80	110
E	55	35	70	80	105

Determine the optimum Assignment schedule

Q-2 (A) 1. The Production department for a company requires 3500kg. of row material (04) for manufacturing a particular item per year. it has been estimated that the cost of placing an order is Rs 35 & the cost of carrying inventory is 25 percentage of the investment in the inventories. The price is Rs 10 per kg. The purchase manager wishes to determine an ordering policy for raw material. Calculate (1) The Optimal lot size (2) the optimal order cycle time (3) Total Inventory Cost

Total Marks: 56

(07)

Q-3(A)1. Construct the dual of following prime problem(03)Maximize Z = 3 x1 - x2 + x3
Subject to constraints,
 $4x1 - x2 \le 8$,
 $8x1 + x2 + 3x3 \le 8$,
 $5x1 - 6 x3 \le 12$,
 $x1, x2, x3 \ge 0$ (03)2. Difference between AOA & AON Network(04)(B)Completely describe the various costs involved with "Inventory Control".(07)

Q-4 (A) There are nine jobs, each of which must go through two machines P and Q in (07) the order PQ, the processing times (in hours) are given below:

1	Machine	Job(s)								
	machine	А	В	С	D	Е	F	G	Н	Ι
	Р	2	5	4	9	6	8	7	5	4
	Q	6	8	7	4	3	9	3	8	11

Find the sequence that minimizes the total elapsed time T. Also calculate the total idle time for the machines in this period.

(B)	A 24 hour supermarket has the following minimal requirements for cashiers:									
	Period	1	2	3	4	5	6			
	Time of the day (24 hour clock	3-7	7-11	11-15	15-19	19-23	23-3			
	Minimum number required	7	20	14	20	10	5			
	Period 1 follows immediately	after	period	d 6. A	cashier	r works	s eight			
	consecutive hours, starting at th	e begi	nning o	of one of	of the six	time p	periods.			
	Determine a daily employee worksheet which satisfies the requirements with									
	the least number of personnel. F	ormula	te the p	roblem	as an LP	Ψ.				
Q-5(A)	What is Simulation and what are simulation	the ad	vantage	es and d	isadvanta	ages of		(07)		
(B)	At barber's shop, the customers a	rrive a	t the av	erage ir	terval of	6 mi <mark>nu</mark>	tes and	(07)		
	the barber takes on an average 5 n	ninutes	s for ser	ving th	e person.					
	Calculate: i. Counter utilization le	evel ii.	Averag	e no. of	f custome	ers in se	rvice iii.			
	Average no. of customers in queu	e iv. A	verage	waiting	; time of	the cust	omers in	1		
	the system v. Expected average w	aiting	time in	the que	ue vi. Pr	obabilit	y that			
	the barber is idle vii. Probability	of findi	ng mor	e than s	³ custom	ers in th	e system	1		
$\Omega_{-6}(\Lambda)$	What are the types of failure in R	enlace	ment M	odels				(07)		
$Q = 0 (\mathbf{R})$	Solve the following LP Problem	ising S	implex	Metho	f			(07)		
(2)	Max Z = 3x1 + 2x2	.5.11.9 5	Impien					(07)		
	Subject to $x1 + x2 \le 4$									
	X1 - x2 <= 2									
	And $x_{1,x_{2}} >= 0$									
Q-7(A)	Use the Graphical method to solv	e the f	ollowin	g LP pr	oblem			(07)		
	Minimize Z = 20x1 + 10x2									
	Subject to the constrai	nts								
	(1) $x_1 + 2x_2 = <40$ (ii) $2x_1 + x_2 > -20$									
	(ii) $5x_1 + x_2 \ge 50$ (iii) $4x_1 + 3x_2 \ge -60$									
(B)	(III) $4x_1 + 5x_2 \ge 00$ What do you meen by CDM. Give one example and explain how to calculate (07)							(07)		
(D)	Critical Path		xampie	und ex		v to car	Julate	(07)		
Q-8(A) Difference between Transportation and Assignment problem with Suitable (0										
Q-8(A)	Difference between Transportation	on and	Assign	ment pi	oblem w	ith Suit	able	(07)		
Q-8(A)	Difference between Transportation Example	on and	Assign	ment pi	oblem w	ith Suit	able	(07)		
Q-8(A) (B)	Difference between Transportation Example Determine an initial basic feasible	on and e soluti	Assign on to th	ment pi ne follo [,]	oblem w	ith Suit	able on	(07)		
Q-8(A) (B)	Difference between Transportation Example Determine an initial basic feasible problem by using NWCM.	on and e soluti	Assign on to th	ment pr ne follo [,]	oblem w	ith Suit	able on	(07)		
Q-8(A) (B)	Difference between Transportation Example Determine an initial basic feasible problem by using NWCM.	on and e soluti	Assign on to th	ment pr	roblem w wing tran	ith Suit	able on	(07)		

	D1	D2	D3	D4	Supply
S1	6	4	1	5	14
S2	8	9	2	7	16
S 3	4	3	6	2	5
Demand	6	10	15	4	