GUJARAT TECHNOLOGICAL UNIVERSITY
 ME - SEMESTER-1 (NEW) EXAMINATION - WINTER 2018

Subject Code: 3710506

Date: 04/01/2019

Subject Name: Advance Image Processing Time: 02:30 PM To 05:00 PM

Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full mark.
Q. 1 (a) Enlist the applications of image processing and explain any one application.
(b) Apply contrast stretching technique on 3-bit gray level image of size $4 \times 4 \quad \mathbf{0 7}$
.Write the output image intensity.

2	1	2	1
4	5	5	6
3	2	1	4
6	2	1	6

Q. 2	(a)	Define Histogram of an image. Explain Histogram equalization and normalization.
(b)	Define the following morphological operations for binary images: (i)Erosion (ii)Dilation (iii)Opening (iv)Closing (v) Hit or Miss transform (vi)	$\mathbf{0 7}$
	Minkowski’s operator for erosion (vii) Minkowski's operator for dilation	

Q. 3 (a) Define the following first order edge detection operators:
(i)Basic edge detection operators (ii)Roberts (iii)Prewitt (iv)Sobel
(b) Write a short note on Canny edge detection operator.
(b) Let an ellipse be defined as
$(\mathrm{x} / \mathrm{a})^{2}+(\mathrm{y} / \mathrm{b})^{2}=1$.
Prove that the image curvature of the ellipse is given by
$K(t)=a b /\left(a^{2} \cos ^{2} t+b^{2} \sin ^{2} t\right)^{3 / 2}$
Q. 4 (a) Write a short note on Harris Corner detector. 07
(b) Write a short note on Scale Invariant Feature Transform(SIFT). 07

OR
Q. 4 (a) Write a short note on Hough transform for circles. 07
(b) Explain discrete dual contour space in shape matching technique. $\mathbf{0 7}$
Q. 5 (a) How moment describes shape's layout. Explain different moments in details 07
(b) Define cumulative angular function to describe image curve and explain. 07

OR
Q. 5 (a) Describe Image Processing in 3D.
(b) Explain Algebric Reconstruction method to solve the density problem in $\mathbf{0 7}$ reconstruction of tomography image.

