GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-1 (NEW) EXAMINATION - WINTER 2018

	•	t Code: 3710510 Date: 03/01/2019 t Name: Statistical Information Processing)
	•	2:30 PM To 05:00 PM Total Marks: 70	
Ins	tructio 1. 2. 3.	Attempt all questions.	
Q.1	(a) (b)	 Prove that Entropy will be maximum when all massages are equiprobable. Define the following terms (1) Wide sense stationary process (2) Sample space (3) Random variable (4) Random process (5) Poisson distribution and (6) mutually exclusive events (7) Bay's Rule 	07 07
Q.2	(a)	Define Cumulative Distribution Function. List and prove all the properties of CDF.	07
	(b)	Explain Arithmetic Code with Example.	07
	(b)	Explain Central limit theorem.	07
Q.3	(a) (b)	Enlist Estimation Theories and Explain one of them. Let X be a continuous random variable with PDF $F_x(X) = \{ kx \ 0 < x < 1 \}$	07 07
		 0, otherwise a. Determine the value of k and sketch <i>fx</i>(<i>x</i>). b. Find and sketch corresponding CDF <i>Fx</i>(<i>x</i>). c. Find P(¼ < X ≤ 2) 	
		OR	
Q.3	(a) (b)	Give Classification of Random Processes. Two random processes $X(t)$ and $Y(t)$ are given by $X(t)=A*cos(wt+\theta)$ and $Y(t)=A*cos(wt+\theta)$, where A and w are constants and θ is a uniform r.v. over (0, 2π). Find the cross-correlation function of $X(t)$ and $Y(t)$ and verify $Rx,y(-\tau)=Rx,y(\tau)$	07 07
Q.4	(a)	Write down CDF and PDF of continuous random variable and discuss how	07

- (b) they arise and how they interrelated. Find Shennon-Feno code for following massages whose efficiency is 96.7%. 07

Massage	А	В	С	D	Е
Probability	0.2	0.2	0.2	0.2	0.2

OR

- State and prove Tchebycheff's Inequality theorem. **O.4** (a)
 - (b) Find Huffman code, average length, entropy, code efficiency and redundancy for 07 the following massages.

Massage	m_1	m ₂	m3	m4	m5	m ₆
Probability	0.4	0.2	0.1	0.1	0.1	0.1

(a) Explain Baye's Criteria for binary hypothesis testing. Q.5

(b) Write Short note on: Reed Solomon Code

estion papers de la contraction de la contractio Q.5 **(a)**

07

07

07

07

07