Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-1 (NEW) EXAMINATION – WINTER 2018

Subject Code: 3710514 Date: 04/01			/2019	
	v	Name: RF and Microwave Circuit Design2:30 PM To 05:00 PMTotal Marks: 70		
Inst	ructio 1. 2. 3.	ns: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full mark.		
Q.1	(a) (b)	Explain the structure and working principle of Gunn diode. Draw lumped element circuit model for a transmission line. Derive expression of a characteristic impedance Z_0 and phase velocity for lossless line.	07 07	
Q.2	(a)	Design an L-section matching network to match a series RC load with an impedance $Z_L=200 - j100 \Omega$ to a 100 Ω line, at a frequency of 500MHz. Use Smith Chart.	07	
	(b)	Compute Transmission (ABCD) matrix of a transmission line section.	07	
	(b)	Write a short note on High-electron-mobility transistor (HEMT).	07	
Q.3	(a)	Draw electric equivalent circuit for a high frequency wire wound resistor, capacitor and inductor. Draw impedance vs. frequency graph for resistor, capacitor and inductor in comparison to ideal components.	07	
	(b)	Design a low pass filter for fabrication using micro strip lines(stubs). The specifications are: cutoff frequency of 4 GHz, third order, impedance of 50 Ω and 3 dB equi-ripple characteristic.g ₁ =3.3487, g ₂ =0.7117,g ₃ =3.3487,g ₄ =1. Use Richard's transformation and Kuroda identity.	07	
Q.3	(a)	OR Calculate microstripline width for a line impedance of 50 Ω . The PCB board material is FR-4 with a relative dielectric constant of 4.6 and thickness of 40 mil. Take frequency of 2 GHz and w/h < 2.	07	
	(b)	Write a short note on two-port transistor oscillator.	07	
Q.4	(a)	Design a bandpass filter having a 0.5 dB equal-ripple response, with $N = 3$. The center frequency is 1 GHz, the bandwidth is 10%, and the impedance is 50 Ω . $g_1=1.5963$, $g_2=1.0967$, $g_3=1.5963$, $g_4=1$.	07	
	(b)	Write a short note on design of single stage transistor amplifier design for maximum gain.	07	
		OR		
Q.4	(a)	Draw and explain RF circuit for One-port oscillator. Design a load matching network (Z_L) for one port oscillator for 50 Ω load impedance that uses a diode having $\Gamma_{in} = 1.25 \angle 40^0$ at desired operating point , for f=6 GHz.	07	
	(b)	For Low noise amplifier design, derive expression to compute the center and radius of noise figure circle.	07	
Q.5	(a)	Derive scattering parameters for Wilkinson equal power divider with even-odd mode analysis. Design equal split Wilkinson power divider for 50Ω system impedance.	07	
	(b)	With circuit diagram and its equivalent, explain the Single ended FET mixer. OR	07	

- Q.5 (a) Explain Ring Hybrid with even-odd mode analysis. Design Ring Hybrid for 50Ω 07 system impedance.
 - (b) A rectangular waveguide cavity is made from a piece of copper WR-187 H-band waveguide, with a=4.755 cm and b=2.215 cm. The cavity is filled with polyethylene (ϵ_r =2.25, tan δ =0.0004). If resonance is to occur at f=5 GHz, find the required length, d, and resulting Q for *l*=1, resonant mode. Surface resistivity of copper is Rs=1.84 ×10-2. The intrinsic impedance is η = 251.3.

tuouestion Papers.cot *****