Enrolmen	t No
----------	------

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER -I-(New) EXAMINATION - SUMMER 2019 Subject Code: 3710501 Date: 15/05/2019 Subject Name: Advanced Digital Signal Processing Time: 02:30 PM TO 05:00 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 07 Q.1 **(a)** Consider a second-order transfer function $H(z) = \frac{1+2z^{-1}+z^{-2}}{(1-0.75z^{-1}+0.125z^{-2})}$. Realize this system using direct form-I, direct form-II, and cascade form via first-order sections. (b) Show that the bilinear transformation maps the $j\Omega$ -axis in the s-plane onto the 07 unit circle, |z|=1, and maps the left-half s-plane, $\operatorname{Re}(s) < 0$ inside the unit circle, |z| < 1. The impulse response of an FIR filter is 07 Q.2 (a) $h[n] = \left\{ 0.2, 0.7, 0.8, 0.15, 0.6, 0.32, 0.5, 0.4, 0.9 \right\}.$ Perform two-component and three-component polyphase decomposition of H(z). (b) Explain two-channel quadrature mirror filter bank in detail. 07 OR (b) Explain sampling rate conversion with cascaded integrator comb filters. 07 Q.3 07 **(a)** Consider a signal x(n) = s(n) + w(n), where s[n] is an AR(1) process that satisfies the difference equation s(n) = 0.8s(n-1) + v(n), where $\{v(n)\}$ is a white noise sequence with variance $\sigma_v^2 = 0.49$, and $\{w(n)\}$ is a white noise sequence with variance $\sigma_w^2 = 1$. The processes $\{v(n)\}$ and $\{w(n)\}$ are uncorrelated. (1). Determine the auocorrelation sequences $\{\gamma_{ss}(m)\}\$ and $\{\gamma_{xx}(m)\}$. (2). Design a Wiener filter of length M=2 to estimate $\{s(n)\}$. (3). Determine MMSE for *M*=2. 07

- (b) Discuss Yule-Walker method for parameter estimation of stochastic models.
 - OR
- 0.3 (a) Determine the parameters and sketch the lattice-ladder filter structure for the 07 system with system function

$$H(z) = \frac{1 - 0.8z^{-1} + 0.15z^{-2}}{1 + 0.1z^{-1} - 0.72z^{-2}}$$

- (b) Discuss forward linear prediction in detail.
- What is an adaptive filter? Using suitable block diagram, explain general **Q.4 (a)** 07 adaptive filtering problem.

07

(b) With the help of steepest descent algorithm, derive the LMS algorithm for noise 07 cancellation.

OR

Q.4 Explain different performance measures used to evaluate the goodness of an 07 (a) adaptive algorithm. Explain the steepest descent algorithm and show that it becomes unstable when the 07 **(b)** step-size parameter is assigned a negative value.

(a) (b)	 (a) Explain system modeling using adaptive filters. (b) Derive the Wiener-Hopf equation with reference to basic Wiener filter. 	
(a) (b)	Explain the application of DSP in linear predictive coding of speech signals. Explain echo cancellation using adaptive filters.	07 07

	(a) (b) (a) (b)	 (a) Explain system modeling using adaptive filters. (b) Derive the Wiener-Hopf equation with reference to basic Wiener filter. OR (a) Explain the application of DSP in linear predictive coding of speech signals. (b) Explain echo cancellation using adaptive filters.