\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 ME - SEMESTER -I-(New) EXAMINATION - SUMMER 2019

Subject Code: 3710215
Date: 09/05/2019
Subject Name: Advanced Data Structures
Time: 02:30 PM TO 05:00 PM

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Construct the open hash table (separate chaining) and closed hash table (open addressing - use linear probing) for the input: 32, 20, 56, 77, 40, 81, 63, 76, 37, 90 using the hash function $\mathrm{h}(\mathrm{k})=\mathrm{k} \bmod 10$. Explain each step in detail.
(b) What is Skip list? Write pseudo code for inserting a node in skip list.
Q. 2 (a) i) Why rehashing is needed? State different ways in which rehashing can be 03
implemented.

ii) Write a recursive pseudo code for Preorder and In Order traversal of a binary 04

Search tree.

(b) Insert the following letters into an empty B-tree of order 5:

CNGAHEKQMFWLTZDPRXYS
OR
(b) What is 2-3 tree? How is it better than other search trees? Construct a 2-3 B tree for the list C, O, M, P, U, T, I, N, G.
Q. 3 (a) Describe Longest Common Subsequence problem. Find Longest Common 07

$$
\begin{aligned}
& \mathrm{X}=\langle\mathrm{A}, \mathrm{~B}, \mathrm{~B}, \mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{C}, \mathrm{~B}, \mathrm{~A}\rangle \\
& \mathrm{Y}=\langle\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{~B}, \mathrm{~B}, \mathrm{C}, \mathrm{~A}, \mathrm{~A}, \mathrm{C}\rangle
\end{aligned}
$$

(b) Which data structures can be used for 1-D Range searching? Explain any one with suitable example.

OR
Q. 3 (a) Find an optimal Huffman code for the following set of frequencies. Also find
how much compression is achieved over fixed-length (3bits) coding scheme.

A	B	C	D	E	F
27	08	16	03	12	07

(b) What is K-D Tree? Create K-D Tree for inserting (3, 6), (17, 15), (13, 15), (6, 07 $12),(9,1),(2,7),(10,19)$ values. Delete $(13,15)$ and $(2,7)$. Draw tree after each operation.
Q. 4 (a) Write Knuth-Morris-Pratt Algorithm. Also compute its time complexity. 07
(b) What are the different types of imbalances that occur while deleting a node $\mathbf{0 7}$ from AVL trees? Explain with an example for each type of imbalance?

OR

Q. 4 (a) What are tries? Generate suffix tries for the following text. 07

Text: bananal0
(b) Build an AVL tree for inserting 14, 17, 11, 7, 53, 4, 13, 12, 8 values. After this insertion delete 53 and 11. Show the step by step construction
Q. 5 (a) Which Data structures can be used for 1-D Range searching? Explain any three with example.
(b) Populate the following hash tables using Cuckoo Hashing.

Input: $\{20,50,53,75,100,67,105,3,36,39\}$
h1 $(\mathbf{k e y})=\mathrm{key} \% 11$
h2(key) $=(\mathrm{key} / 11) \% 11$
Table size $=11$

OR

Q. 5 (a) How 1-D Range searching can be applicable in BST with data stored in leaves?

Create 1-D BST for the $50,45,100,25,49,120,105,46,90,95$ values. Retrieve all points in [25, 95].
(b) Explain Hopscotch Hashing with suitable example.

