\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER - II(New)• EXAMINATION - SUMMER - 2020

Subject Code:3720216

Date: 26/10/2020
Subject Name: Advance Algorithms
Time: 02:30 AM To 05:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Describe divide and conquer paradigm with any one of algorithm.
(b) Write all the different topological orderings for the following graph.

Q. 2 (a) Traverse the following graph using Breadth First Search Technique.

Consider vertex S as the starting vertex.

(b) Describe Edmond's Blossom algorithm to compute augmenting path.

OR
(b) What is dynamic programming? Explain one of the problem that can be solved using dynamic programming.
Q. 3 (a) Discuss the aggregate analysis method for amortized analysis
(b) Solve the following system of linear equations by Crout's Method.
(LU factorization or decomposition method)
$9 \mathrm{X} 1+3 \mathrm{X} 2+3 \mathrm{X} 3+3 \mathrm{X} 4=24$
$3 \mathrm{X} 1+10 \mathrm{X} 2-2 \mathrm{X} 3-2 \mathrm{X} 4=17$
$3 \mathrm{X} 1-2 \mathrm{X} 2+18 \mathrm{X} 3+10 \mathrm{X} 4=45$
$3 \mathrm{X} 1-2 \mathrm{X} 2+10 \mathrm{X} 3+10 \mathrm{X} 4=29$

OR

Q. 3 (a) Write and explain Strassen's Algorithm. 07
(b) Calculate the maximum flow for the following graph using Ford-Fulkerson Method. Mention step by step procedure and also draw residual network of a graph.

Q. 4 (a) Explain Chinese remainder theorem. 07
(b) Calculate the maximum flow for the following graph using Edmond-Karp maximum-flow algorithm. Mention step by step procedure and also draw residual network of a graph.

OR
Q. 4 (a) Consider the following directed weighted graph. Using Floyd-Warshall Algorithm, find the shortest path distance between every pair of vertices.

(b) Solve the following linear program using simplex method.
maximize: $\mathrm{Z}=8+5 \mathrm{X} 2-4 \mathrm{X} 6$
subject to: $\mathrm{X} 1=2+\mathrm{X} 2-\mathrm{X} 6$

$$
\begin{aligned}
& \mathrm{X} 3=6-\mathrm{X} 2 \\
& \mathrm{X} 4=6-2 \mathrm{X} 2+\mathrm{X} 6 \\
& \mathrm{X} 5=2-\mathrm{X} 2+\mathrm{X} 6 \\
& \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6 \geq 0
\end{aligned}
$$

Q. 5 (a) Describe Advanced Number Theoretic Algorithm.
(b) Explain Randomized Algorithms with its application.
Q. 5 (a) Explain any advanced sorting technique along with algorithm by applying recently proposed data structures.
(b) Write a short note on NP-completeness.

