Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME – SEMESTER – I (New)– EXAMINATION – WINTER-2019

Subject Code: 3710310 Date: 02-01-2020

Subject Name: Optimization Techniques for Engineers

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks..
- Q.1 $Maximize \ Z = 7x1 + 6x2$ subject to, $x1 + 4x2 \le 4$ $2x1 + x2 \le 3$ $x1, x2 \ge 0$ to get optimal solutions.
- Q.2 A Consider the function $f(x) = x^4 14x^3 + 60x^2 70x$, Use the Fibonacci 07 search method to find the value of x that minimizes f(x) over the range [0,2]. Locate this value of x to within a range 0.3.
 - B Use the Golden Section search to find the value of x that minimizes $f(x) = x^4 07$ $14x^3 + 60x^2 - 70x$, in the range [0,2] Locate this value of x to within a range of 0.3.

OR

- B Minimize Z = 2x1 + 3x2subject to, $4x1 + 2x2 \ge 12$ $x1 + 4x2 \ge 6$ $x1, x2 \ge 0$ Use two-phase simplex method to get optimal solutions.
- Q.3 Minimize $f(x) = x^4 + 4\cos x$, over the interval [1,2] using secant method.
- Q.3 Minimize $f(x) = 8e^{1-x} + 7 \log x$, over the interval [1,2], to within an 14 uncertainty of 0.23 using Golden Section method.
- Q.4 Find the minimizer of $f(x_1, x_2) = \frac{1}{2}X^T \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} X X^T \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, using the conjugate gradient method with the initial point $X^T = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$
- Q.4 Find the minimizer of $f(x_1, x_2) = \frac{1}{2} X^T \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix} X X^T \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, using the newton's method with the initial point $X^T = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$.
- Q.5 Find the minimizer of $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ using the Hooke and jeeves method with the initial point $X^T = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $\Delta X^T = \begin{bmatrix} 0.8 & 0.8 \end{bmatrix}^T$ and $\varepsilon = 0.1$.

OR

Q.5 Find the minimizer of $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ using the Rosenbrock's method with the initial point $X^T = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $\Delta X^T = \begin{bmatrix} 0.8 & 0.8 \end{bmatrix}^T$ and minimum permissible step length $\varepsilon = 0.15$, $\alpha = 3$, $\beta = 0.5$.

07