\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 ME - SEMESTER -II-(New)-EXAMINATION - SUMMER-2019

Subject Code: 3722323
Date: 29/05/2019
Subject Name: Information Theory \& Coding
Time: 02:30 PM TO 05:00 PM
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Derive the Channel Capacity for Discrete memory less channel.
(b) Prove that entropy is maximum when all cases are equi-probable with suitable 07 example.
Q. 2 (a) Use the generator polynomial $g(x)=x^{3}+x^{2}+1$ to generate systematic (7,4)
cyclic code for 1011,1110, 0111,1010 .
(b) \(\begin{aligned} \& Construct Huffman code for source shown below. Find the entropy of the source,

\& average length of the codeword, efficiency and redundancy of the code.

\&\)| Source | A | B | C | D | E | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Probability | 0.2 | 0.15 | 0.2 | 0.25 | 0.15 | 0.05 |\end{aligned}$. \begin{aligned} & \text { OR }\end{aligned}$

(b) Construct shannon-feno code for source shown below. Find the entropy of the 07 source, average length of the codeword, efficiency and redundancy of the code.

Source	A	B	C	D	E	F
Probability	0.25	0.2	0.2	0.15	0.15	0.05

Q. 3 (a) Write short note on Run Length Encoding technique. 07
(b) Differentiate Lossy and Lossless compression techniques for image processing and explain JPEG image compression technique in detail.

OR
Q. 3 (a) Write short note on LZW Encoding Algorithm. 07
(b) Write short note on CCITT G4 2D (two dimensional) coding scheme. 07
Q. 4 (a) Enlist various speech compression techniques, and explain any one in brief. 07
(b) What are the consequences of the Viterbi decoding algorithm not 07 yielding a posteriori probabilities?

OR

Q. 4 (a) Write short note on Binary Image Compression. 07
(b) Write short note on H 261 video encoding algorithm. $\mathbf{0 7}$
Q. 5 (a) Explain symmetric key cryptography with suitable example. 07
(b) How cryptography is useful in digital signature. $\mathbf{0 7}$

OR
Q. 5 (a) Explain asymmetric key cryptography with suitable example. 07
(b) Explain DES algorithm in detail. $\mathbf{0 7}$

