\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 ME - SEMESTER - I (New)- EXAMINATION - WINTER-2019

Subject Code: 3710812
Date: 02-01-2020

Subject Name: Computational Method for Mechanical Engineering
 Time: 02:30 PM TO 05:00 PM
 Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) There is a system for the unknown currents i_{1}, i_{2} and i_{3} in the electrical network. Using Kirchhoff's current and voltage laws the following equations obtained. Find the current using Gauss elimination method.

$$
i_{1}-i_{2}+i_{3}=0,-i_{1}+i_{2}-i_{3}=0,10 i_{2}+25 i_{3}=90,20 i_{1}+10 i_{2}=80
$$

(b) Solve the following initial-value problem arises from a mechanical system using Laplace transform

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}, y(0)=1, y^{\prime}(0)=0
$$

Q. 2 (a) It has been claimed that in 60% of all solar-heat installations the utility bill is reduced by at least one-third. Accordingly, what are the probabilities that the utility bill will be reduced by at least one-third in
(i) Four of five installations
(ii) At least four of five installations?
(b) Find the Fourier series of $f(x)=x^{2}$ in the interval $(0,2 \pi)$ and hence deduce that $\frac{\pi^{2}}{12}=\frac{1}{1^{1}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots$

OR
(b) Derive the governing ordinary differential equation for the damped vibration and discuss all the cases.
Q. 3 (a) If P is the pull required to lift a load W by means of a pulley block, find a linear law of the form $\mathrm{P}=\mathrm{mW}+\mathrm{c}$ connecting $\& \mathrm{~W}$ using following data,

P	12	15	21	25
W	50	70	100	120

Where P and W are taken in Kgs . \& compute P when $\mathrm{W}=150 \mathrm{Kgs}$.
(b) The velocity of a train which starts from rest is given by the following table, the time being reckoned in minutes from the start and speed in $\mathrm{Km} / \mathrm{hrs}$.

Time (minutes)	0	3	6	9	12	15	18
Velocity(kms/hr)	0	22	29	31	20	04	00

Estimate approximately the distance covered in 18 minutes by simpson's $3 / 8$ rule OR
Q. 3 (a) A practical study was carried out to check the effect of parameters on various
properties of sand mold collected data are as follows,

Water content	Mold hardness $\left(\mathrm{Kg} /(\mathrm{cm})^{2}\right)$	Permeability	Shear stress $\left(\mathrm{Kg} /(\mathrm{cm})^{2}\right)$
$3 \%(15 \mathrm{ml})$	91	210	0.38
$4 \%(20 \mathrm{ml})$	86	300	0.50
$5 \%(25 \mathrm{ml})$	83	360	0.55
$6 \%(30 \mathrm{ml})$	78	380	0.88

Compute the values of mold hardness when water content is 4.5% using newton's forward interpolation.
(b) (1) Determine a 90% confidence interval foe the mean of a normal distribution
with variance $=16$, using a sample of $\mathrm{n}=100$, with mean $=8$. Take corresponding value of c from below table.

γ	90%	95%	99%	99.9%
c	1.645	1.960	2.576	3.291

(2) A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	a	4 a	3 a	7 a	8 a	10 a	6 a	9 a

(i) Find the value of a.
(ii) Find $\mathrm{P}(\mathrm{X}<3)$
Q. 4 (a) A tightly stretched string with fixed end points at $x=0$ and $x=20$ is initially given the deflection $f(x)=k x(20-x)$. If it is released from this position, then find the deflection of the string.
(b) Find the dominant eigen value of $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ by Power method by choosing $x_{0}=[1,1]^{T} \&$ hence find the other eigen value also.

OR

Q. 4 (a) A rod of length 1 with insulated side is initially at uniform temperature $100^{\circ} \mathrm{C}$.

Its ends are suddenly cooled at $0^{\circ} \mathrm{C}$ and kept that temperature. Find the temperature $u(x, t)$.
(b) If $\vec{F}=\left(2 x^{2}-4 z\right) \hat{\imath}-2 x y \hat{\jmath}-8 x^{2} \hat{k}$ then evaluate $\iiint_{V} \operatorname{div} \vec{F} d v$, where V is07 bounded by the planes $x=0, y=0, z=0$ and $x+y+z=2$
Q. 5 (a) Verify Green's theorem for $\oint_{c}[(x-y) d x+3 x y d y]$ where c is the boundary of07 the region bounded by the parabolas $x^{2}=4 y$ and $y^{2}=4 x$.
(b) Solve the differential equation using method of variation of parameter

$$
y^{\prime \prime}-7 y^{\prime}+6 y=2 \sin 3 x
$$

OR

Q. 5 (a) Solve the differential equation : $y^{\prime \prime}-y=t ; \quad y(0)=y^{\prime}(0)=1$.07
(b) Find the eigenvalues and corresponding eigenvectors of the matrix

$$
\left[\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

