Enrolment No._

Date: 02-01-2020

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER - I (New)- EXAMINATION - WINTER-2019

Subject Code: 3710812

Subject Name: Computational Method for Mechanical Engineering **Total Marks: 70**

Time: 02:30 PM TO 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 07 Q.1 (a) There is a system for the unknown currents i_1 , i_2 and i_3 in the electrical network. Using Kirchhoff's current and voltage laws the following equations obtained. Find the current using Gauss elimination method.

 $i_1 - i_2 + i_3 = 0, -i_1 + i_2 - i_3 = 0, 10i_2 + 25i_3 = 90, 20i_1 + 10i_2 = 80$

Solve the following initial-value problem arises from a mechanical system using **(b)** 07 Laplace transform

$$y'' + 3y' + 2y = e^t, y(0) = 1, y'(0) = 0$$

- It has been claimed that in 60% of all solar-heat installations the utility bill is Q.2 **(a)** 07 reduced by at least one-third. Accordingly, what are the probabilities that the utility bill will be reduced by at least one-third in
 - Four of five installations (i)
 - (ii) At least four of five installations?
 - (b) Find the Fourier series of $f(x) = x^2$ in the interval $(0, 2\pi)$ and hence deduce 07 that $\frac{\pi^2}{12} = \frac{1}{1^1} - \frac{1}{2^2} + \frac{1}{3^2} - \cdots$

OR

- (b) Derive the governing ordinary differential equation for the damped vibration and 07 discuss all the cases.
- (a) If P is the pull required to lift a load W by means of a pulley block, find a linear 07 Q.3 law of the form P=mW +c connecting & W using following data,

Р	12	15	21	25
W	50	70	100	120

Where P and W are taken in Kgs. & compute P when W=150 Kgs.

The velocity of a train which starts from rest is given by the following table, the 07 **(b)** time being reckoned in minutes from the start and speed in Km/hrs

the sens reenched in minutes from the start and speed in this mo.								
Time (minutes)	0	3	6	9	12	15	18	
Velocity(kms/hr)	0	22	29	31	20	04	00	

Estimate approximately the distance covered in 18 minutes by simpson's 3/8 rule OR

(a) A practical study was carried out to check the effect of parameters on various 07 Q.3 properties of sand mold collected data are as follows,

Water content	Mold hardness	Permeability	Shear
	$(Kg/(cm)^2)$		stress(Kg/(cm) ²)
3% (15 ml)	91	210	0.38
4% (20 ml)	86	300	0.50
5% (25 ml)	83	360	0.55
6% (30 ml)	78	380	0.88

Compute the values of mold hardness when water content is 4.5% using newton's forward interpolation.

(b) (1) Determine a 90% confidence interval foe the mean of a normal distribution 03 with variance = 16, using a sample of n=100, with mean=8. Take corresponding value of c from below table.

γ	90%	95%	99%	99.9%
с	1.645	1.960	2.576	3.291

(2) A random variable X has the following probability distribution	(2) A	random	variable 2	X has the	e following	probability	distribution	
--	-------	--------	------------	-----------	-------------	-------------	--------------	--

2) It fundom variable it has the following probability distribution									
Х	0	1	2	3	4	5	6	7	
P(X)	a	4a	3a	7a	8a	10a	6a	9a	

- (i) Find the value of a.
- (ii) Find P(X < 3)
- Q.4 (a) A tightly stretched string with fixed end points at x = 0 and x = 20 is initially 07 given the deflection f(x) = kx(20 x). If it is released from this position, then find the deflection of the string.
 - (b) Find the dominant eigen value of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ by Power method by choosing $x_0 = \begin{bmatrix} 1, 1 \end{bmatrix}^T \&$ hence find the other eigen value also. OR
- Q.4 (a) A rod of length l with insulated side is initially at uniform temperature 100°C. 07 Its ends are suddenly cooled at 0°C and kept that temperature. Find the temperature u(x, t).
 - (b) If $\vec{F} = (2x^2 4z)\hat{\imath} 2xy\hat{\jmath} 8x^2\hat{k}$ then evaluate $\iiint_V div\vec{F} dv$, where V is **07** bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 2
- Q.5 (a) Verify Green's theorem for $\oint_c [(x y)dx + 3xydy]$ where c is the boundary of 07 the region bounded by the parabolas $x^2 = 4y$ and $y^2 = 4x$.
 - (b) Solve the differential equation using method of variation of parameter $y'' 7y' + 6y = 2 \sin 3x$. 07

OR

Q.5 ((a)	Solve the differential	equation	: y'' - y = t;	y(0) = y'(0) = 1.	07
-------	-----	------------------------	----------	----------------	-------------------	----

(b) Find the eigenvalues and corresponding eigenvectors of the matrix

$$\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

04

07