GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER - II(New)• EXAMINATION - SUMMER - 2020

Subject Code:3720801 **Subject Name: Finite Element Analysis** Time: 02:30 PM To 05:00 PM **Instructions:**

Total Marks: 70

Date: 26/10/2020

- - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- (a) Explain generalized procedure to solve a problem with FEM. Clearly explain Q.1 07 engineering applications of FEM.
 - (b) Explain with neat sketches various types of elements used in FEM with their 07 applications.
- Explain Pre-processing, Solution and Post-processing with regards to FEM. Q.2 **(a)** 07
 - (b) For a system shown in figure 1 below, determine the displacements and stresses. 07 Assume modulus of elasticity $E = 20 \times 10^3 \text{ N/mm}^2$ and area A = 250 mm^2 and F = 60 kN.

OR

(b) An axial stepped bar is subjected to a load of F = 50 kN as shown in figure 2 07 below. If the modulus of elasticity of the material is 200 GPa, determine the displacements and stresses of each section.

- Derive the stiffness matrix of truss element in global coordinate system. Q.3 07 (a)
 - What do you mean by convergence in FEM ? State its importance in FEM. **(b)** 03 (c) Explain automatic mesh generation.

04

OR Q.3 (a) Discuss the properties of global stiffness matrix. 03

1

- (b) With the help of neat sketches explain Kirchoff and Mindlin plate elements and 04 compare their capabilities.
- (c) A three element truss as shown in figure 3 below has modulus of elasticity E = 07200 GPa. The area of each element is 50 mm². The length $L_1 = 1000$ mm and L_2 = 750 mm. The loads $P_1 = 50$ kN and $P_2 = 40$ kN and applied as shown. Determine the nodal displacements.

Figure 3

- Q.4 (a) Derive shape functions for quadratic distribution.
 - (b) Determine the displacement and rotation at the nodes under the force and moment located at the center of the beam as shown in figure 4 below. The beam is fixed at each ends. A downward force of 10 kN and an applied moment of 20 kN-m act at the center of the beam. Let E = 210 GPa and $I = 4 \times 10^{-4}$ m⁴.

- Q.4 (a) Find the temperature distribution in one dimensional heat transfer in thin fins 07 using FEM.
 - (b) Aluminum fin of rectangular cross section is used to remove heat from a surface whose temperature is 100°C. The temperature of the ambient air is 20°C. The convective heat transfer coefficient of surrounding air is 30 W/m²°C. The thermal conductivity of aluminium is 168 W/m°C. The fin is 80 mm long, 5 mm wide and 1 mm thick. Determine the temperature distribution along the fin using 4 element finite element model.
- Q.5 (a) Explain Galerkin's approach for derivation of element matrices with suitable 07 example.

07

(b) The nodal coordinates of the triangular element are as shown in figure 5 below. 07 At the interior point P, the x-coordinate is 3.3 and $N_1 = 0.3$. Determine N_2 , N_3 and the y-coordinate of point P. Also determine Jacobian of the transformation J of the element.

OR

Q.5	(a)	Explain various types of nonlinearities giving suitable examples.	07
	(b)	Explain the difference between plane truss and space truss.	03
	(c)	Explain the properties of Eigen vectors	04

joue