GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course code: 3330501

Course Curriculum

CHEMICAL ENGINEERING MATERIALS (Code: 3330501)

Diploma Programme in which this course is offered	Semester in which offered
Diploma in Chemical Engineering	3 rd Semester

1 RATIONALE

For working in the industries related to chemical manufacturing, students requires the knowledge of various classes of material like metals and alloys, ceramics, polymers, composites, coatings, insulating materials, adhesives and lubricants for different applications. Study of Chemical Engineering Materials also has importance towards the understanding of properties of materials for construction of various equipments and piping systems. Properties of materials affect the life and performance of equipments to the large extent. Thus information of properties of these materials is important for students to ensure the minimum cost of products and safety in the plants.

2 COMPETENCY (Programme Outcome according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different types of skills in the students so that they are able to acquire the following competencies:

• Identify appropriate materials for chemical plant equipments, piping, insulation and lining.

3 TEACHING AND EXAMINATION SCHEME

To	Teaching Scheme Total Credits			Examination Scheme				
1 e	(In Hou		(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L	T	P	C	ESE	PA	ESE	PA	100
3	2	0	5	70	30	00	00	100

 $\begin{array}{l} \textbf{Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit; ESE-End Semester Examination; PA-Progressive Assessment} \end{array} \\$

4 COURSE DETAILS

Unit	Major Learning Outcomes			
	(Course Outcomes in Cognitive			
	Domain according to NBA	Topics and Sub-topics		
	terminology)			
Unit-I	Describe scope of material	Scope of material science		
	science	Definition and explanation		
Properties	Explain important properties of	of:		
Of	materials	Melting point, Boiling		
Materials	Select materials	point,		
		Specific heat, Thermal		
		conductivity, Thermal		
		expansion,		
		Thermal insulation,		
		Stresses,		
		Strain, Yield stress,		
		Fatigue, Creep		
		Principles of selection of		
		materials		
Unit-II	Define corrosion and describe it's	1 Definition of corrosion		
	types	Types of corrosion: Direct		
Corrosion	40	corrosion, Electro-chemical		
and Its	Control and prevent corrosion	corrosion, Galvanic		
Prevention	~ '0'	corrosion,		
		High temperature corrosion		
		3 Factors affecting corrosion		
		rate		
	•. ()	4 Methods for control and		
		prevention of corrosion		
Unit– III	Describe and compare ferrous	1 Properties and uses of Cast		
	metals and alloys	iron,		
Metals and		Wrought iron, Mild steel,		
Alloys	Describe non-Ferrous	Stainless		
	metals and alloys	steel		
		2 Comparison of ferrous		
110	Explain furnaces	metals and		
		alloys		
		3 Properties and uses of		
_ >		metals:		
7		Aluminium, Zinc,		
		Chromium,		
		Nickel, Tin, Copper,		
		Titanium,		
		Tungsten, Platinum and		
		Silver		
		4 Properties and uses of		
		alloys:		
		Duralumin, Brass, Bronze,		
		Inconel, Hastalloy B and C,		
		Invar,		

TT 24	Main Insuring Outside	
Unit	Major Learning Outcomes	
	(Course Outcomes in Cognitive	TD:
	Domain according to NBA	Topics and Sub-topics
	terminology)	Valley
		Y alloy
		5 Purification of metals using
		Blast furnace and Arc furnace
		.0
Unit– IV	Describe ceramic materials	Ceramic materials
	. Compare ceramic material	Composition, properties and
Ceramic		uses of china clay, fire clay,
Materials		bentonite
		Classification, properties
		and uses of refractories
	00	Composition, properties and
		uses of Soda lime glass,
		borosilicate glass, high silica
	. 0	glass, fibre glass, glass wool,
		form glass Composition, properties
		and uses of Porcelain
Unit-V	Describe polymers	Definition and importance
	2 contes porjuicis	of Polymer
	Compare types of	Addition and condensation
Organic	polymerization	Polymerization
Materials	Describe and classify plastics,	Plastics : definition,
1	rubbers	classification, general properties
	Explain vulcanizing of rubber	and uses
	_	Rubbers: definition,
		classification, general properties
7		and uses
		Compare natural and
		synthetic rubber
		Vulcanizing of rubber

Course code: 3330501

Unit	Major Learning Outcomes			
Cint	(Course Outcomes in Cognitive			
	Domain according to NBA	Topics and Sub-topics		
	terminology)	Topics and sub-topics		
Unit-VI	6a. Describe and classify	Paints: classification and		
	paints	uses		
Protective	6b. Describe and classify	Ingredients of paints: their		
Coatings	Varnishes	properties and importance		
and	6c. Describe and Classify	Special types of paints and		
Insulations	insulations	their		
		applications		
		Varnishes: classification and		
		uses		
		Ingredients of Varnishes		
		Types of insulations		
		Properties and applications		
		of		
		different :(i) Electric		
		insulation		
		(ii)Thermal		
		insulation		
Unit-VII	Describe and classify composites	List of composite materials		
	_40	Properties and uses of Fiber		
Composites,	Describe and classify lubricants	reinforced plastics(FRP),		
Lubricants	Describe and classify adhesives	Metal		
and		matrix composites(MMC),		
Adhesives		Ceramic matrix		
		composites(CMC)		
		Classification, properties		
	36.79	and uses of Synthetic lubricants,		
		Semisolid lubricants		
	03	Adhesives: classification,		
		properties and uses		

5 SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

			Distri	bution of '	Theory M	arks
Unit	Unit Title	Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	Properties of Materials	4	2	3	2	07
II	Corrosion and its	6	2	4	4	10
	Prevention	O	<u> </u>	4	4	10
III	Metals and Alloys	7	5	4	3	12
IV	Ceramic Materials	6	4	4	2	10
V	Organic Materials	5	3	3	2	08
VI	Protective coatings and	6 4	4	2	10	
	Insulations	U	+	4		10
VII	Composites,					
	Lubricants and	8	4	5	4	13
	adhesives					
	Total	42	24	27	19	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6 SUGGESTED LIST OF PRACTICAL/EXERCISES

(Not Applicable)

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based presentations, internet based assignments, and teacher guided self learning activities, MCQ/Quiz. These could be individual or group-based.

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- 1. Collecting and demonstrating samples of different materials
- 2. Following Tutorials exercises may be given to the students

S. No.	Unit No.	Topic on which Tutorial Exercises may be given	Approx. Hrs. Required
1	I	Principles of selection of materials	04
2	II	Control and prevention of corrosion	04
3	III	Comparison of properties of Ferrous metals and alloys	04
4	III	Comparison of properties of important Non-Ferrous metals and alloys	04

GTU/NITTTR/Bhopal/12-13 Gujarat State

S. No.	Unit No.	Topic on which Tutorial Exercises may be given	Approx. Hrs. Required
5	IV	Comparison of properties of Refractories	04
6	V	Compounding of Plastic and Rubber	02
7	VI	Ingredients of Paints and varnishes	02
8	VI	Thermal insulations	02
9	VII	FRP	02
		Total	28

9. SUGGESTED LEARNING RESOURCES

A. List of Books:

S. No.	Title of Books	Author	Publication
1	Material science and	Hazarachaudhary S. K.	Indian book
1	processes	Trazarachadanary S. IX.	distribution co.
2	Engineering Materials	Rangwala S C,	Charotar publishing
	Eligilieering Materials	Rangwala K. S.	house pvt. limited
3	Engineering Meterials	Doinut D. V	S.Chand and Co., New
3	Engineering Materials	Rajput R. K.	Delhi

B. List of Major Equipment/Materials

---- Nil ----

C List of Software/Learning Websites

- i. web.iitd.ac.in/~suniljha/MEL120/L2_Engineering_Materials.pdf
- ii. http://engineershandbook.com/Materials
- iii. www.engineeringtoolbox.com/engineering-materials-properties-d_1225.html
- iv. http://nptel.iitm.ac.in/courses.php

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics:

- Prof. R. P. Hadiya, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot
- Prof. Kajal J. Sareriya, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot
- Prof. N. N. Hansalia, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot
- **Prof. Manish R. Nasit**, Lecturer in Chemical Engineering, Shri N. G. Patel Polytechnic, Isroli Afwa

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof Bashir Shaikh**, Assistant Professor, Department of Applied Sciences.
- Prof Shashi Kant Gupta, Professor and Coordinator for State of Gujarat

GTU/NITTTR/Bhopal/12-13 Gujarat State

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

MECHANICAL OPERATIONS (Code: 3330502)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	3 rd Semester

1. RATIONALE

The operations of chemical plants require use of material handling and size reduction equipments, screens, agitator, mixers, centrifuges, cyclones, filters and other mechanical separation equipments. Therefore students must have information about the principles, construction and working of these equipments so that they can plan for their efficient use in plants. In this course the students would also learn simple calculations to judge the performance of these equipments.

2. COMPETENCY (Programme Outcome according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

Plan and supervise operation of mechanical operation equipments.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits		Examination Scheme						
	(In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L	T	P	C	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Properties of Particulate	1a. Differentiate Unit operation and Unit process	1.1 Fundamentals of Unit operation and Unit process
Solids	1b. Describe specific properties of solids	1.2 Specific properties of solids: Particle density and Bulk density, diameter, sphericity, equivalent diameter, specific surface area, volume surface mean diameter, mass mean diameter, and shape factor
	1c. Calculate specific property parameters of solids	1.3 Calculation of particle diameter, sphericity, equivalent diameter, specific surface area, volume surface mean diameter, mass mean diameter, and shape factor, numbers of particles in solid
Unit – II Screen Analysis	2a. Explain Screen	2.1 Basics of Ideal and actual screen
Serecii Anarysis	2b. Compare types of screen analysis	2.2 Types of screen analysis2.2.1 Cumulative analysis2.2.2 Differential analysis2.3 Applications of screen analysis
	2c. Derive formula for effectiveness of screen	2.4 Capacity and effectiveness of screen
	2d. Calculate capacity and effectiveness of screen	2.5 Derivation of formula for overall effectiveness of screen2.6 Calculation of capacity and
		effectiveness of screen
	2e. Identify faults in screen	2.7 Faults in screening
	2f. Describe types of screening equipment	2.8 Types of screen: Trommel, Grizzlies, Vibrating screen
Unit – III Size Reduction	3a. Explain size reduction with applications	3.1 Principles of Size reduction and its application
	3b. Describe working of size reduction equipments	3.2 Classification, comparison and selection of size reduction equipments based on size reduction principle
	3c. Characterise the comminution products	3.3 Characteristics of comminution products
	3d. Explain energy and power requirement in comminution.	3.4 Energy and power required in comminution
	3e.Explain empirical laws of size reduction	3.5 Laws of size reduction: (i) Rittingers law (ii) Bond's law (iii) Kick's law
	3f. Compute the energy and power requirement for size reduction	3.6 Calculation of power required for size reduction using empirical laws
	3g. Calculate work index	3.7 Work index

Unit	Major Learning Outcomes	Topics and Sub-topics
	3h. Explain different size reduction equipment	3.8 Principle, construction and working of Jaw crusher, Gyratory crusher, Fluid Energy mill, Ribbon Blender, Roll crusher, and Ball Mill
	3i. Calculate angle of nip	3.9 Derivation of equation of angle of nip, Calculation of angle of Nip for Roll crusher
	3j. Calculate critical speed	3.10 Derivation of equation of critical speed of Ball mill and its calculations
	3k. Differentiate between open and close circuit grinding	3.11 Difference between open and close circuit grinding
Unit – IV Sedimentation	4a. Explain sedimentation4b. Draw batch sedimentation curve	 4.1 Fundamentals of sedimentation 4.2 Batch sedimentation 4.3 Inter phase height Vs time curve for Batch sedimentation
	4c. Describe principle of flocculation and thicker	4.4 Principle of flocculation4.5 Principle, construction and working of Gravity thicker
	4d. Explain and compare settling	4.6 Fundamentals of free and hindered settling
	4e. Explain Tubular Centrifuge	4.7 Construction and working of Tubular centrifuge
	4f. Describe Cyclone separator 4g. Calculate Cut diameter and efficiency of cyclone	4.8 Principle, construction and working of Cyclone separator4.9 Cut diameter and efficiency of cyclone
	4h. Explain Terminal settling velocity, Stoke's law, Newton's law	4.10 Terminal settling velocity Stoke's law and Newton's law
Unit –V Filtration	5a. Describe filtration 5b. Classify equipments for liquid-solid separation	5.1 Basics of filtration5.2 Classification of equipments for liquid-solid separation
	5c.Explain types of filter	5.3 Principle, construction and working of filter press, leaf filter, rotary vacuum filter, cartridge filter
	5d.Characterise filter media	5.4 Filter media and its characteristics
	5e.Explain filter aids 5f. Describe method of application	5.5 Basics of Filter aids5.6 Method of application
	5g.Differentiate constant rate and constant pressure filtration	5.7 Constant rate filtration and constant pressure filtration

Unit	Major Learning Outcomes	Topics and Sub-topics
	5h. Explain cake resistance, filter media resistance for various conditions	5.8 Brief description of specific cake resistance and filter media resistance for constant rate, constant pressure and vacuum filtration (without numerical)
	5i. Classify centrifugal equipments	5.9 Classification of centrifugal equipments
	5j. Explain batch centrifuge	5.10 Principle, construction and working of batch centrifuge
	5k. Compare centrifuge and filter press	5.11 Advantages and disadvantages of centrifuge over filter press
Unit –VI Separation of	6a. Define solid separation	6.1 Definition and application of solid separation
Solid Particles	6b. Describe factors affecting selection of equipment	6.2 Factors affecting selection of equipment for solid separation
	6c. Explain types of solid separation equipments	6.3 Working principle and construction of a) Jigging b) Elutriation c) Double cone classifier d) Electrostatic precipitator e) Magnetic separator f) Froth flotation cell
	6d. Explain differential settling methods	6.4 Differential settling methods, sink and float method
Unit VII Agitation and Mixing	7a. Describe agitation and mixing	7.1 Define agitation and mixing, give their applications
Wilking	7b. Classify impellers 7c. Compare various impellers	7.2 Classification of Impellers and brief explanation
.0	7d. Explain vortex formation and prevention	7.3 Vortex formation and swirling 7.4 Methods of Vortex prevention
	7e. Explain agitation vessel7f. Derive equation for power consumption	 7.4 Construction and working of agitation vessel 7.5 Derivation of equation for power consumption in agitation vessel 7.6 Calculations of power
9	7g. Calculate power consumption	consumption in baffled and unbaffled tank
	7h. Describe flow number	7.7 Flow number
	7i. Explain factors affecting agitation	7.8 Factors affecting agitation
	7j. Explain purpose of mixing	7.9 Purpose of mixing solids and pastes
	7k. Describe factors for selection of equipments	7.10 Factors affecting selection of mixing equipments

Unit	Major Learning Outcomes	Topics and Sub-topics
	71. Explain rate of mixing and mixing index 7m. Compute mixing index	7.11 Rate of mixing and mixing index for pastes & powder 7.12 Calculation of mixing index
	7n. Describe types of mixers	7.12 Construction and working of a) Ribbon blender b) Kneaders c) Pug mill d) Banbury mixer e) Muller mixer

5. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

Unit	Unit Title		Distribution of Theory Marks				
		Teaching	R	U	A	Total	
		Hours	Level	Level	Level	Marks	
I	Properties of Particulate	07	2	5	2	09	
	Solids			-			
II	Screen Analysis	05	12	2	3	06	
III	Size Reduction	10	2	5	5	12	
IV	Sedimentation	06	2	3	2	07	
V	Filtration	10	2	7	3	12	
VI	Separation of Solid	06	2	4	2	08	
	Particles						
VII	Agitation and Mixing	12	2	6	8	16	
	0. (
To	otal	56	13	32	25	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (Course Outcomes in psychomotor and affective domain) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of Programme Outcomes/Course Outcomes in affective domain as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Apprx. Hrs. Required
1.	I	Measure volume surface mean diameter, mass mean diameter,	4
2.	II	number of particles using sieve shaker Carry out differential and cumulative screen analysis	4
3.	III	Test Rittinger's law for grinding in ball mill and measure critical speed	4
4.	III	Test Kicks law for crushing in jaw crusher	4
5.	III	Test Bond's law for crushing in roll crusher	4
6.	IV	Measure efficiency of cyclone separator	4
7.	IV	Determine rate of settling by sedimentation	4
8.	V	Measure cake resistance, filter media resistance in filter press.	4
9.	V	Measure rate of filtration, cake resistance, filter media resistance in basket centrifuge	4
10.	V	Measure rate of filtration in gravity filtration	4
11.	V	Measure rate of filtration in vacuum filtration	4
12.	VI	Measure efficiency of separation in froth flotation cell	4
13.	VII	Evaluate mixing index in double cone mixer	4
14.	VII	Measure power consumption in baffled and unbaffled agitation vessel	4
		Total	56

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- 1. Assignments
- 2. Technical Quiz/MCQ Test
- 3. Presentation on some course topic
- 4. I-net based assignments

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- 1. Working of different equipment should be demonstrated using chart and models or with help of video/animation films.
- 2. Expert Lecture (by persons working in Industry) may be oragnised.
- 3. Visit to nearby industries where such equipment are being used may be arranged.

9. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr.	Title of Books	Author	Publication
No.			
1	Unit Operations of	McCabe and Smith	McGrawhill Publications,
	Chemical Engineering		New Delhi
2	Introduction to Chemical	Badger W. L. and	McGrawhill Publications,
	Engineering	Banchero J. T	New Delhi
3	Unit Operation –I	Gavhane K. A.	Nirali Prakashan, Pune

B. List of Major Equipment/Materials

a. Sieve shaker – Sieve dia – 100 mm to 200 mm, no of sieve – 6-8, Opening – as per requirement (micro or coarse particle)

- b. Laboratory Ball mill 5kg capacity, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- c. Jaw crusher 10-50 kg/hr capacity, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- d. Laboratory Roll crusher 5-25 kg/hr capacity, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- e. Agitation vessel setup 20-50 liter capacity Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- f. Cyclone separators Product Particle as per requirement, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- g. Froth flotation Cell, 5-15 kg/hr capacity, Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- h. Gravity filter
- i. Vacuum Filter
- j. Laboratory filter Press Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- k. Basket centrifuge Suitable for operation on 415V, 50Hz, 3 Phase, AC supply
- 1. Double cone mixer Suitable for operation on 415V, 50Hz, 3 Phase, AC supply

C List of Software/Learning Websites

- a. www.sciencedirect.com
- b. www.cheresources.com
- c. http://nptel.iitm.ac.in/courses.php
- d. http://engineershandbook.com/unit.operations

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. P. K. Patel, Lecturer in Chemical Engineering, Govt. Polytechnic Gandhinagar
- **Prof. M. R. Acharya**, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar
- **Prof. R. P. Hadiya**, Lecturer in Chemical Engineering, Govt. Polytechnic Rajkot.

Coordinator and Faculty Members from NITTTR Bhopal

- Prof Bashir Shaikh, Assistant Professor, Department of Applied Sciences.
- **Prof Shashi Kant Gupta, Professor and Coordinator for State of Gujarat**

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

FLUID FLOW OPERATION (Code: 3330503)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	3 rd Semester

1. RATIONALE

In almost every chemical plant fluids have to be handled and hence study of fluids at rest and in motion is important. The information about the basic concepts and principles of hydrostatics, hydrodynamics and their applications in handling various fluids like gases, vapors, liquids and slurries are provided in this course which is required for smooth and proper operation of fluid transportations machineries. Using these concepts power requirement for pumps, blowers and compressors can be determined and friction losses through pipes and fittings can also be calculated. Therefore this course is one of the important courses since it attempts to develop these skills in students.

2. **COMPETENCY (Programme Outcome according to NBA Terminology):**

The course content should be taught and implemented with the aim to develop different skills so that students are able to acquire following competency:

 Maintain flow of different fluids in the chemical plants according to the process requirement.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits					Exan	nination Scl	heme	
	(In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total Mark
								S
L	T	P	С	ESE	PA	ESE	PA	
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major Learning	
	Outcomes (Course	70 1014
Unit	Outcomes in	Topics and Sub-topics
	Cognitive Domain	
	according to NBA	
	terminology)	
Unit – I	1a. Define Ideal fluid and	1.1. Ideal fluid and Real fluid
Fluid Statics	Real fluid	1.2. Fundamentals of fluid statics and
and its	1b. Differentiate between	dynamics
Applications	fluid statics and dynamics	
	1c. Classify the types of	1.3. Definitions of pressure concept,
	pressure	Static head, Static pressure, Gauge
	_	pressure, Absolute pressure,
		Dynamic pressure, Total pressure,
		Vacuum(negative pressure)
	1d. Compare compressible	1.4. Compressible and incompressible
	and incompressible fluids	fluids
	1e. Derive equation of	1.5. Derivation of equation of pressure in
	pressure in static fluid	static fluid
	1f. Explain manometers	1.6. Principle construction and working
	1g. Derive equation of	of Manometers with equation of
	pressure difference	pressure difference - Simple U tube
		manometer, Inclined manometer,
		Piezometer, Two fluid manometer,
		Micro-manometer
Unit– II	2a. Explain velocity change	2.1 Velocity field, velocity gradient,
Fluid-Flow	across cross section	shear stress and rate of shear
Phenomena	2b. Explain effect of solid	2.2 Boundary layer, it's separation and
	bou <mark>ndary</mark>	wake formation
	2c. Define steady state and	2.3 Steady state and unsteady state
	unsteady state conditions	conditions
	2d. Describe types of	2.4 Viscosity : Absolute, Kinematic and
	viscosities	Relative
	2e. Classify fluids	2.5 Classification of fluids : Newtonian
.4.3		and Non-Newtonian with examples
	2f. Describe Reynold's	2.6 Reynold's experiment and Reynolds
	experiment	number, turbulent flow, laminar
****	2 D C 1 '.'	flow, transition flow
Unit- III	3a. Define velocities	3.1 Average velocity and mass velocity
Basic	3b. Derive continuity	3.2 Continuity equation for mass
Equations of Fluid	equation	balance in steady flow
Flow	3c. Derive Bernoulli's	3.3 Bernoulli's equation and corrections
LIOM	equation and explain	in Bernoulli's equation like kinetic
	corrections	energy correction, correction for
		fluid friction, correction for Pump
	2d Hagan Daigavilla's	work
	3d. Use Hagen-Poiseuille's Equation	3.4 Hagen-Poiseuille's Equation
Unit- IV	4a. Describe roughness of	4.1 Roughness of pipe
Friction in		4.1 Rouginiess of pipe
r i icuon m	pipe	

Unit Flowing Fluid	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology) 4b. Explain hydraulic radius and equivalent diameter 4c. Compare skin and form friction 4d. Use friction factor chart 4e. Calculate friction losses	 Topics and Sub-topics 4.2 Hydraulic radius and equivalent diameter 4.3 Skin friction and form friction 4.4 Friction factor chart 4.5 Friction from changes in velocity or direction (a) Friction loss from
Unit- V	5a. Compare pipe and tube	sudden expansion of cross section (b) Friction loss from sudden contraction of cross section 4.6 Friction loss in fittings and valves 5.1 Introduction of pipe and tube
Transportation of fluid	5b. Describe fittings & joints5c. Describe valves	 5.2 Types and uses of fittings and joints 5.3 Construction and working of various types of valves like (a) Gate valve (b) Globe valve (c) Check valves (d) Control valve
	5d. Classify pumps 5e. Explain pumps	5.4 Classification of pumps5.5 Construction and working of centrifugal, reciprocating and rotary pump
	5f. Explain characteristics of centrifugal pump5g. Calculate NPSH, head and power	 5.6 Developed head and power requirement in centrifugal pump 5.7 NPSH, Suction lift and Cavitation in centrifugal pump 5.8 Characteristic curves of Centrifugal
	Sh. Funkin construction	pump 5.9 Numerical based on NPSH, efficiency, head and power
Unit- VI	5h. Explain construction,working and uses of fluidmoving machineries6a. Describe methods of flow	 5.10 Construction, working and uses of Compressor, Fan, Blower, Vacuum pump and Jet ejectors 6.1 Methods of flow measurement
Flow Measurement	6b. Classify flow measuring devices	6.2 Classification of flow measuring devices
	6c. Explain flow meters	6.3 Construction, working principles and application of flow meters like Rotameter, Orifice meter, Venturi meter, Pitot tube, weirs, Coriolis meter, Magnetic meter, Ultrasonic meter
	6d. Derive equation of flow rate6e. Solve simple numerical	 6.4 Derivation of equation of flow rate through Orifice meter, Venturi meter, Pitot tube and weirs 6.5 Numerical of Orifice meter, Venturi
	_	meter

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
Unit-VII	7a Explain conveying	7.1 Pneumatic and Hydraulic conveying
Conveying and		with industrial applications
Fluidization	7b Explain Fluidization	7.2 Fluidization and its industrial applications
	7c Explain Porosity	7.3 Porosity of static bed, Porosity of fluidized bed, Minimum porosity
	7d Describe minimum fluidization velocity	7.4 Minimum fluidization velocity
	7e Explain relation between	7.5 Relation of bed pressure drop and
	bed pressure drop and bed	bed height with graph
	height	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

			Distri	bution of T	Theory Ma	rks
Unit	Unit Title	Teaching Hours	R Level	U Level	A Level	Total Marks
I	Fluid Statics and its Applications	06	02	03	02	07
II	Fluid–Flow Phenomena	06	02	03	02	07
III	Basic Equations of Fluid Flow	07	02	06	02	10
IV	Friction in Flowing Fluid	07	02	06	02	10
V	Transportation of Fluid	12	04	07	04	15
VI	Flow Measurement	12	03	07	04	14
VII	Conveying and Fluidization	06	02	03	02	07
	Total	56	17	35	18	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

Sr. No.	Unit No.	Practical/Exercise (Course Outcomes in Psychomotor Domain according to NBA Terminology)	Approx. Hrs Required	
1.	II	Identify types of flow by using Reynolds's apparatus	4	
2.	II	Measure absolute and kinematic viscosity using Oswald viscometer	4	
3.	III	Use Bernoulli's apparatus for mechanical energy balance	4	
4.	III	Estimate viscosity of water using Hagen-Poiseuille's equation	4	
5.	IV	Measure friction losses through pipe, fittings and valves	4	
6.	IV	Measure friction losses through packed bed 4		
7.	V	Measure pressure developed by reciprocating pump 4		
8.	V	Measure head developed by centrifugal pump 4		
9.	V	Measure friction losses through fittings and valves		
10.	VI	Measure flow through pipe using venturimeter	4	
11.	VI	Measure flow through pipe using orifice meter	4	
12.	VI	Measure flow through pipe using rotameter 4		
13.	VI	Measure flow through open channel using notches 4		
14.	VII	Measure minimum fluidization velocity through fluidized bed	4	
	V	Total	56	

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based presentations, internet based assignments, and teacher guided self learning activities, MCQ/Quiz. These could be individual or group-based.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Working of different equipment and fluid transport systems should be demonstrated using chart and models or with help of video/animation films.
- ii. Expert Lecture (by persons working in Industry) may be oragnised.
- iii. Visit to nearby industries where such fluid flow operations are in use may be arranged.

9. SUGGESTED LEARNING RESOURCES

(A) List of Books:

Sr.	Title of Books	Author	Publication
No.			
1	Unit Operations of Chemical	McCabe, Warren L.,	McGraw Hill
	Engineering	Julian C. Smith	Publication, New
			York 2004 (Seventh
			Edition)
2	Introduction to Chemical	L.Badger, Julius T.	McGraw Hill
	Engineering	Banchero	Publication, New
			York 2004 (Seventh
			Edition)
3	Unit Operations of Chemical	Chattopadhyay, P.	Khanna Prakashan,
	Engineering Vol-I		New Delhi, 1996
4	A text book of Fluid	Khurmi, R.S.	S. Chand Publication,
	Mechanics	V	New Delhi 2002
5	Unit Operation –I	Gavhane, K.A.	Nirali Prakashan, Pune
			2009

B. List of Major Equipment/Materials with Major Specification

- i. Venturimeter assembly for fluid flow measurement(Minimum flow rate 05 lit/min, mercury manometer)
- ii. Orifice meter assembly for fluid flow measurement(Minimum flow rate 05 lit/min, mercury manometer)
- iii. Rota meter assembly for fluid flow measurement(Minimum flow rate 05 lit/min, minimum 1 in. transparent tube)
- iv. V Notch, Rectangular Notch assembly for flow measurement in open channel (Minimum notch size 5 cm)
- v. Reynold's Experiment setup for studying types of flow (Minimum pipe dia. –0.5 in transparent pipe)
- vi. Bernoullies experiment setup for mechanical energy balance in flowing fluid with transparent channel of at least 1 in ID.
- vii. Reciprocating Pump Assembly with pump & motor of minimum 0.25 HP
- viii. Centrifugal Pump Assembly with pump & motor of minimum 0.25 HP
- ix. Fluidized bed setup made of glass pipe with minimum 2 in ID
- x. Friction through Pipes, Fittings and Valves setup (0.5 in ID pipe with elbow, Tee, Square, Reducer, Enlarger, Glob valve, Gate valve)
- xi. Packed bed setup to measure friction losses with minimum 2 in ID transparent pipe
- xii. Oswald viscometer and stopwatch

C List of Software/Learning Websites

- i. http://www.nzifst.org.nz/unitoperations/flfltheory.htm
- ii. http://books.google.co.in/books?id=K4almhE5BoAC&pg=PP1&lpg=PP4&ots=1XDNGSxMsY&dq=Unit+Operation-1+nirali+Prakashan+published+year
- iii. http://www.chemicalprocessing.com/whitepapers/fluid-handling/

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. J. R. Vadher**, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar
- **Prof. M. R. Acharya**, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar
- **Prof. P. M. Gadhiya**, Lecturer in Chemical Engineering, Govt. Polytechnic, Rajkot
- **Prof. N. N. Hansalia**, Lecturer in Chemical Engineering, Govt. Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof Bashir Shaikh**, Assistant Professor, Department of Applied Sciences.
- Prof Shashi Kant Gupta, Professor and Coordinator for State of Gujarat

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

INDUSTRIAL STOICHIOMETRY

(Code: 3330504)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	3 rd Semester

1. RATIONALE

Industrial Stoichiometry provides the fundamental information to determine the material and energy balances for all types of unit operations and unit processes across the equipment and overall chemical plant. Material and energy balance calculations are of prime importance for design and also for conservation of mass and energy to reduce the losses and cost that enhances overall economy of plant. The unit conversions, material and energy balance are the essential part in the practice of other courses such as mechanical operations, fluid flow, heat Transfer, mass transfer etc. Thus this course is a core course for chemical engineers and should be learned sincerely by students.

2. COMPETENCY (Programme Outcome according to NBA Terminology):

The course should be taught and implemented with the aim to develop different types of skill so that students are able to acquire following competency:

 Determine material and energy balance for different unit operations and processes.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme					
(In Hours)		(L+T+P)	Theory Marks		Practical	Marks	Total	
-				_				Marks
L	T	P	C	ESE	PA	ESE	PA	100
3	2	0	5	70	30	00	00	100

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

Unit	Major Learning	Topics and Sub-topics
	Outcomes (Course	
	Outcomes in Cognitive	
	Domain according to NBA	
	terminology)	
Unit – I	1a. Explain importance of	1.1 Introduction to process calculation
Unit Systems	process calculation	r
ľ	1b. Define different unit	1.2 Dimensions and systems of units
	systems	1.3 Fundamental quantities of units,
		Derived quantities
	1c. Explain the	1.4 Definition and units of force,
	importance of	volume, pressure, work, energy,
	physical quantities of	power, heat
	Units.	
	1d. Convert units among	1.5 Unit conversions in FPS, MKS and
	different systems	SI systems
Unit- II	2a. Calculate	2.1 Definition and calculations of
Basic Chemical	important physical	mole, atomic weight, molecular
Calculations	quantities	weight, equivalent weight, specific
		gravity and API gravity
	2b. Calculate	2.2 Composition of solid, liquid by
	composition of	weight % and mole %
	mixtures and solutions	2.3 Morality, normality, morality,
TT '4 TTT		gm/lit and related simple numericals
Unit– III Ideal Gas Law	3a. Derive ideal gas law. 3b. State reference	3.1 Concept of ideal gas
Ideal Gas Law	conditions	3.2 Derivation of ideal gas law 3.3 Definition of STP and NTP
	conditions	3.4 Dalton's law and Amagat's law
	3b. Calculate	3.5 Derive relation between mole%,
	important quantities	volume% and pressure% of ideal
	for ideal gas mixture	gases
	G S S S S S S S S S S S S S S S S S S S	3.6 Calculation of average molecular
		weight, density, mole%, weight% in
	*	gas mixture in SI/MKS systems
Unit- IV	4a. Explain law of	4.1 Law of conversation of mass
Material	conservation of mass	
Balance In	4b. Calculate mass	4.2 Brief description and simple
Processes	balance of important	material balance calculation of
Without	unit operations at	drying, distillation, absorption,
Chemical	steady state condition	mixing, crystallization, evaporation
Reactions		4.3 Single stage material balance
		calculation of leaching and
	4a Dagarika magazika	extraction
	4c. Describe recycling and by passing	4.4 Brief idea regarding recycling
	operations	and by passing operation
	operations	
Unit- V	5a. Explain basic	5.1 Definition: Limiting reactant,
Material	concepts of material	Excess reactant, conversion, yield
Balance In	balance with chemical	and selectivity
Processes	reaction	

Unit	Major Learning	Topics and Sub-topics
	Outcomes (Course	
	Outcomes in Cognitive	
	Domain according to NBA	
	terminology)	
Involving	5b. Calculate mass	5.2 Simple numerical for finding
Chemical	balance with chemical	yield, conversion and
Reactions	reaction	composition
		5.3 Simple calculation of material
		Balance based on reaction.
Unit- VI	6a. Calculate	6.1 Heat capacity and specific heat
Energy Balance	heat capacity, specific	6.2 Mean heat capacity of gases
	heat, heat capacity of	6.3 Heat capacity of gas mixture and
	gas mixture and	liquid mixture
	liquid mixture	6.4 Calculations of heat capacity by
		integral equation up to three
		terms
	6b. Explain concepts of	6.5 Brief explanation of sensible
	sensible heat and	Heat and latent heat of fusion,
	latent heat	sublim <mark>ation, va</mark> porization
	6c. Calculate standard heat	6.6 Calculations of standard heat of
	of formation and heat of	formation from heat of
	reaction	combustion data
		6.7 Calculations for heat of reaction
	_/	from heat of formation and heat
		of combustion data
Unit-VII	7a. Describe combustion	7.1 Introduction of combustion
Combustion		
	7b. Describe calorific	7.2 Types of fuels
	values	7.3 Calorific values of fuels
		7.4 Proximate and ultimate analysis
		of solid fuel
	7c. Calculate calorific	7.5 Numericals related to calorific
	value and air	values of fuel from composition
	requirement for	7.6 Numericals related to air
	combustion	Requirement and composition of flue
		gases.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distril	oution of	Theory N	Iarks
		Teaching Hours	R Level	U Level	A Level	Total Marks
I	Unit Systems	3	2	2	2	06
II	Basic Chemical Calculations	5	2	2	4	08
III	Ideal Gas Law	5	2	2	4	08
IV	Material Balance in Process without Chemical Reactions	8	0	6	7	13
V	Material Balance in Process Involving Chemical Reactions	7	2	3	7	12
VI	Energy Balance	8	2	4	8	14
VII	Combustion	6	2	2	5	09
To	otal	42	12	21	37	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF PRACTICAL/EXERCISES

Not Applicable

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities: Tutorials, group assignments based on mass and energy balance of equipments like heat exchanger, boilers, distillation column, evaporator, dryer, reactors, absorption column, Use of MS-Excel in solving numerical.

8. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- More numerical examples should be discussed in the class to make concepts clear. Home Assignment should given to students on similar type of numerical for more practice.
- ii. Video lecture from NPTEL websites may be shown to class for better understanding of the concepts.
- iii. Video/animation films may be shown for explaining abstract concepts.
- iv. Quizzes may be organised in the class by dividing it into groups to create an environment of competition.
- v. Tutorial sessions may be organised as given in following table

Sr. No.	Unit No.	Topics/Sub Topics on which Numerical may be given during Tutorial Sessions	Approx. Hrs. Required
1	I	Systems of Units and Conversions	02
2	II	Numericals based on composition of mixtures and solutions	03
3	III	Numericals based on Ideal gas law and calculation of composition of gas mixture	03
4	IV	Numericals based on mass balance for important unit operations	06
5	V	Numericals based on mass balance involving chemical reactions	04
6	VI	(a) Numericals based on heat capacity and heat change(b) Numericals based on heat of formation and heat of reaction	06
7	VII	Numericals on calorific values of fuel, theoretical air requirement and composition of flue gases	04
		Total	28

9. SUGGESTED LEARNING RESOURCES

A. List of Books:

S. No.	Title of Books	Author	Publication
1	Stoichiometry	Bhatt B. I. and Vora S. M.	Tata-McGraw Hill, New Delhi, Year-2007
2	Process Calculation	Gavhane K. A.	Nirali Prakashan, Pune, Year-2012
3	Basic Principles and Calculations in Chemical Engineering	Himmelablau David M.	PHI Learning, New Dehli, Year-2003

B. List of Major Equipment/Materials

Nil.

C. List of Software/Learning Websites

i.Basic Principles & Calculations in Chemical Engg (CD Rom) ii.www.ocw.mit.edu

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Harsh B. Shukla**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Rakesh R. Vasava**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Mukesh B. Dhangar**, Lecturer in Chemical Engineering, Shri N. G. Patel Polytechnic, Isroli-Afwa

Coordinator and Faculty Members from NITTTR Bhopal

Prof Bashir Shaikh, Assistant Professor, Department of Applied Sciences.

Prof Shashi Kant Gupta, Professor and Coordinator for State of Gujarat

Gujarat State 6

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Course Curriculum

CHEMICAL PROCESS TECHNOLOGY-I (Code: 3330505)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	3 rd Semester

1. RATIONALE

The importance of this subject arises from the need of providing comprehensive and balanced understanding of essential link between chemistry and the chemical industry. It is vital to develop simple but meaningful flow diagram for each chemical product which a student can understand. This course develops skill for arranging and understanding treatment, reaction and separation steps in a flow diagram for variety of chemicals including acids, chloro-alkalies, cement, lime, coal, coal chemicals, plastics, dyes and intermediates, pharmaceutical products, soap and detergents and many other products. Diploma holders utilize this skill to read and recognize each step of process flow diagrams during their job. The area of job may be production, R and D, design, technical services, project development, sales and marketing etc. Thus it is a key course every chemical engineer should develop mastery over it.

2. COMPETENCIES (Programme Outcome according to NBA Terminology):

The course content should be taught and implemented with the aim to develop different types of skills so that student is able to acquire following competencies.

- Prepare flow charts for manufacturing important chemicals in plants.
- Prepare important chemicals in laboratory

3. TEACHING AND EXAMINATION SCHEME

Tea	aching S	cheme	Total Credits	Examination Scheme				
	(In Hou	rs)	(L+T+P)	Theory M	arks	Practical M	Iarks	Total
								Marks
L	T	P	C	ESE	PA	ESE	PA	
4	0	2	06	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

4. COURSE DETAILS

	Major I coming Outcomes	1
TT *4	Major Learning Outcomes	T
Unit	(Course Outcomes in Cognitive	Topics and Sub-topics
	Domain according to NBA	
	terminology)	
Unit – I	1a. Classify chemical Industries	1.1 Scope and classification of
Acid And		chemical Industries
Alkali	1b. Describe properties and uses	1.2 Properties and uses of
		Sulphuric acid, HCL, soda ash
		and caustic soda
	1c. Prepare flow diagram and	1.3 Manufacture of:(i) sulphuric
	Explain manufacture	acid by DCDA process (ii)
	•	Hydrochloric acid (iii)soda ash
		by Solvay process (iv)caustic
		soda byelectrolytic process
	1d. Explain major engineering	1.4 Major engineering problems of
	problems	sulphuric acid and soda ash
	r	manufacturing
Unit– II	2a. Describe cement and lime	2.1 Introduction of cement and lime
Cement And		2.2 Properties and uses of cement
Lime		and lime
	40	2.3 Types of cement
	2b. Prepare flow diagram and	2.4 Manufacture of Portland
	explain manufacture	Cement and lime
	2c. Explain major engineering	2.5 Major Engineering problems of
	problems	cement industry
Unit- III	3a. Describe various ores	3.1 Iron ores, bauxite and copper
Metallurgical	. 0	pyrites
Industries	3b. Explain manufacture with	3.2 Production of pig iron by
	neat figure	Bessemer process, Aluminum
		from bauxite; and extraction of
	~ 7	copper from copper pyrites
Unit- IV	4a. Describe coal & coal	4.1. Types of coal and coal
Coal And	chemicals	chemicals
Coal	4b.	4.2. Coking of coal
Chemicals	4c. Explain coal processes	4.3. Distillation of coal tar
		4.4. Gasification of coal
		4.5. Hydrogenation of coal
Unit-V	5a. Classify polymers	5.1 Classification of polymers
Polymers	5b. Differentiate thermosetting	5.2 Thermosetting and
. •	and thermoplastic polymer	thermoplastic polymers
	5c. Prepare flow diagram and	5.3 Manufacture of
	explain manufacture	(i) Polyethylene by Philips
	_	process
		(ii)Polyvinyl chloride
		(iii)Phenol formaldehyde
		(iv)Nylon 6,6 (v) Polyester
		Fibre
Unit– VI	6a Explain dye	6.1. Definition & applications of
		dye
Dyes And		6.2. Classification of dyes
Intermediates		0.2. Classification of dyes

	Major Learning Outcomes		
Unit	(Course Outcomes in Cognitive	Topics and Sub-topics	
	Domain according to NBA		
	terminology)		
	and explain manufacture	(i) Aniline by reduction of	
		nitrobenzene,	
		(ii) Anthraquinone	
		6.4. from phthalic anhydride,	
		6.5. Vat dye and	
		6.6. Reactive dye	
Unit- VII	7a. Describe soap and Detergent	7.1 Soap and detergent	
Miscellaneous			
	7b. Prepare flow diagram and	7.2 Manufacture of (i) soap by	
	Explain manufacture	7.3 continuous hydrolysis and	
		7.4 saponification (ii) Linear Alkyl	
		7.5 Benzene(LAB)	
	7c. Describe explosives and	7.6 Explosives - Ammonium	
	propellants	7.7 nitrate, TNT and RDX	
		a. Important Propellants	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	Acids-Alkali	14	04	09	04	17
II	Cement and Lime	07	02	05	02	09
III	Metallurgical Industries	07	03	04	02	09
IV	Coal and Coal chemicals	05	02	04	01	06
V	Polymers	08	02	05	03	10
VI	Dyes and Intermediates	08	02	05	03	10
VII	Miscellaneous	07	03	04	02	09
	Total	56	18	36	17	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of practical skills (**Course Outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies (Programme Outcomes). Following is the list of practical exercises for guidance.

Note: Here only Course Outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

S. No.	Unit	Practical/Exercise (Course Outcomes in Psychometer Domain according to	Apprx. Hrs.
	No.	(Course Outcomes in Psychomotor Domain according to NBA Terminology)	Required
1	I	Standardize sulfuric acid solution	02
2	I	Standardize hydrochloric acid solution	02
3	I	Standardize sodium hydroxide solution	02
4	II	Prepare hydrated lime	02
5	III	Beneficiate ores	02
6	IV	Determine calorific value of coal	02
7	V	Prepare phenol formaldehyde	02
8	VI	Identify some polymers using simple tests	02
9	VI	Prepare nitrobenzene	02
10	VI	Prepare indigo dye	02
11	VI	Prepare vat dye	02
12	VI	Prepare reactive dye	02
13	VII	Prepare soap	02
14	VII	Prepare detergent	02
		Total	28

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based presentations, internet based assignments, teacher guided self learning activities, and MCQ/Quiz. These could be individual or group-based.

8. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. More examples of Flow Charts should be discussed in the class to make concepts clear. Home Assignment should be given to students on preparing flow charts for more practice.
- ii. Video/animation films may be shown for explaining abstract concepts and manufacturing process in industries.
- iii. Samples of detailed flow charts from Industries may be collected and students may be asked to interpret them.

9. SUGGESTED LEARNING RESOURCES

A. List of Books:

S.	Title of Books	Author	Publication
No.			
1	Outlines of Chemical	M. Gopala Rao,	Affiliated East West
	Technology, 3 rd edition	Marshall Sittig	Press (Pvt) Ltd-New
			Delhi
2	Shreve's Chemical Process	Austin G.T.	McGraw Hill
	Industries, 5 th edition		publication –New Delhi
3	Chemical Technology -Vol. I	G.N. Pandey and	Vani Books Company
	and II, 2 nd edition	Shukla	-Hyderab <mark>ad</mark>
4	A Text Book on	Rao B. K. B.	Khanna Publishers –
	Petrochemicals,		New Delhi
	2 nd edition		

B. List of Major Equipment/Materials

(i) Glassware: Conical flask, burette, pipette, round bottom flask, measuring cylinder, beaker (ii) Glass Assembly: Round bottom flask, reaction vessel, condenser, separating vessel(iii) Burner (iv) Weight balance (minimum 0.1gm) (v) Heating and cooling bath

C List of Software/Learning Websites

- i. http://www.epa.gov/sectors/sectorinfo/sectorprofiles/chemical.html
- ii. www.emis.vito.be/sites/default/Bref_cement_and_lime_production.pdf
- iii. www.docbrown.info/page04/Mextract.htm
- iv. http://www.goiit.com/posts/show/0/content-general-principles-of-extraction-of-metals-804401.htm
- v. http://www.contentshoppe.com/images/eLearning/sample2.swf
- vi. http://www.petrochemistry.net/coal-chemicals.html
- vii. http://www.auroma.in/propertiescoal.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. R P Hadiya, Lecturer in Chemical Engineering, Govt. Polytechnic, Rajkot
- Prof. S K Charola, Lecturer in Chemical Engineering, Sir BPTI, Bhavnagar
- Prof. N N Hansalia, Lecturer in Chemical Engineering, Govt. Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof Bashir Shaikh**, Assistant Professor, Department of Applied Sciences.
- Prof Shashi Kant Gupta, Professor and Coordinator for State of Gujarat