GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PROCESS HEAT TRANSFER (Course Code: 3340501)

Diploma Programme in which this course is offered		
Chemical Engineering	4 th Semester	

1. RATIONALE

In almost every chemical plant heat transfer takes place (sometimes it is intentional while sometimes it is unintentional). Study of heat transfer at steady state and unsteady state is therefore important. The knowledge of the basic concepts and principles of heat transfer helps smooth and proper operation of various heat exchangers, evaporators and condensers. Using the concepts of conduction, convection and radiation heat losses through pipes, equipments and storage tanks can be estimated. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. **COMPETENCY**

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

• Supervise operation and maintenance of various heat transfer equipments.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Classify Modes of heat transfer
- ii. Derive equations of steady state heat transfer through wall, cylinder and sphere
- iii. Explain shell and tube heat exchangers
- iv. Explain heat transfer with phase change
- v. Calculate radiation based on radiation laws

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits		Examination Scheme						
((In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total
								Marks
L	T	P	C	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Define Heat Transfer & write its'	1.1 Definition and importance of heat
Fundamental	importance	transfer in process Industries
of Heat	1b. Classify Modes of heat transfer	1.2 Modes of heat transfer
Transfer		(a) Conduction (b) Convection
		(c) Radiation
	1c. Differentiate steady state and	1.3 Steady state and unsteady state heat
	unsteady state heat transfer	transfer
Unit – II	2a. Explain Fourier's Law	2.1 Fourier's law of heat conduction with
Heat Transfer		Concepts of (a) Heat transfer rate
by Conduction		(b) Heat flux (c) Temperature gradient
	2b. Describe thermal conductivity.	2.2 Thermal conductivity and its variation
	,	with temp.
	2c. Derive equations of steady state	2.3 Steady state (S.S.) heat conduction
	heat transfer through wall,	through composite wall
	cylinder and sphere	2.3.1 S.S. heat conduction through
	2d. Calculate heat transfer rate	composite cylinder up to three
	a. Carearate near transfer rate	layers
		2.3.2 S.S. heat conduction through
		composite sphere up to three
		layers
		2.4 Simple problems by direct use
		formula
	2e. Explain Thermal Conductivity of	2.5 Thermal Conductivity of solids,
	solids, liquids and gases	liquids and gases
	2f. Describe insulation	2.6 Hot and cold Insulation
	2g. Calculate critical radius of insulation	(a) Optimum thickness of insulation
	msulation	(b) Lagging of steam pipe
		2.7 Desiration of a metion for suitical
	-69	2.7 Derivation of equation for critical radius of insulation and calculations
	0.	radius of insulation and calculations
TI:4 TIT	2. Describe trace of convection	2.1 Types of Commention
Unit – III	3a.Describe types of convection	3.1 Types of Convection
Heat Transfer by Convection		3.1.1 Free convection
by Convection	21. English Newton's Long	3.1.2 Force convection
	3b. Explain Newton's Law	3.2 Newton's Law of convective heat
		transfer
	3c.Derive equation of overall heat	3.3 Individual and Overall heat transfer
	transfer coefficient	coefficient
U	3d. Calculation for convection	3.4 Simple Problems of Convection
Unit – IV	4a. Classify heat exchanger	4.1 Types of heat exchanger based on flow
Heat	4b. Describe Double pipe heat	pattern, function and construction
exchangers	exchanger	4.2 Double pipe heat exchanger
January City	4c. Explain shell and tube heat	(a) Counter current (b) Co-current
	_	
	exchangers	4.3 Shell and tube heat exchanger:
	4d. Describe plate type heat	(a) 1-1 Pass (b) 1-2 Pass (c) 2-4 Pass
	exchanger	4.4 Plate type heat exchanger
	4e. Describe finned type exchanger	4.5. Finned type (autom ded accuse and land
	4f. Explain heat transfer in different	4.5 Finned type(extended surface) heat
	medium.	exchanger

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
		4.6 Heat transfer in agitated vessels
	4g. Derive equation and Calculate	4.7 L.M.T.D.: derivation of equation and
	L.M.T.D.	simple calculations
	4h. Calculate overall heat transfer co-	4.8 Overall heat transfer co-efficient of
	efficient and area of heat	heat exchangers and heat exchanger
TT *4 T7	exchangers	area
Unit – V Heat Transfer	5a. Explain heat transfer with phase change	5.1 Heat transfer with phase change
with Phase	5b. Explain dimensionless groups	5.2 Significance of dimensionless groups
Change	20. Explain difficultioness groups	(a) Prandtl No. (b) Reynold No.
		(c) Grashoff No. (d) Nusselt No.
	5c. Describe boiling	5.3 Phenomena of Boiling
		(a) Pool and Nucleate boiling
	5d. Describe condensation and	5.4 Phenomena of Condensation
	condensers	(a) Drop wise and film wise
		Condensation
		(b) Commonly used Condensers
Unit – VI	6a. Explain radiation facts	6.1 Fundamental facts of radiation
Thermal	6b. Define radiation terms	6.2 Concepts of radiation
Radiation		(a) Emission of radiation
		(b) Wavelength of radiation
		(c) Emissive power
		(d) Black body (e) Gray body
		(f) White body (g) Opaque body(h) Monochromatic wave length
	6c. Describe radiation laws	6.3 Radiation laws
	de. Describe fadiation laws	(a) Kirchhoff's Law (b) Plank's Law
		(c) Stefan Boltzmann Law
		(d) Wein's law
	6d. Calculate radiation based on	6.4 Simple calculations of radiation
	radiation laws	between black surfaces

Unit – VII	7a. Define evaporation	7.1 Introduction of evaporation
Evaporation	7b. Explain characteristics of liquid	7.2 Characteristics of liquid for evaporation
	7c. Differentiate single and multi effect evaporation	7.3 Single and multi effect evaporation with flow arrangement
	7d. Classify evaporators	7.4 Types of evaporators
	va. Classify evaporators	(a) Short tube evaporator
		(b) Agitated film evaporator
		(c) Long tube vertical evaporators
		(i) Forced circulation
		(ii)Upward flow [Climbing film]
		(iii)Downward flow [Falling film]
	7. Evaluin assessants	(iv) Triple Effect Evaporator
	7e. Explain evaporator capacity	7.5 Evaporator capacity and economy
	7f. Solve simple evaporation problem	7.6 Direct use of formula for solving
	r	simple evaporation problems
Ī	7g. Describe duhring's rule	7.7 Duhring's rule and its importance.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	Fundamentals of Heat	2	1	2	0	3
	Transfer					
II	Heat Transfer by Conduction	12	3	4	7	14
III	Heat Transfer by Convection	6	2	2	4	8
IV	Heat Exchangers	12	4	4	7	15
V	Heat Transfer with Phase	8	2	3	5	10
	Change					
VI	Thermal Radiation	8	2	3	5	10
VII	Evaporation	8	2	3	5	10
Tota	al	56	16	21	33	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (Outcomes in Psychomotor Domain)	Apprx. Hrs. Required
1	II	Determine the thermal conductivity of Metal Rod	4
2	II	Determine the thermal conductivity of composite wall	4
3	III	Determine critical radius of insulating material	4
4	III	Determine the specific heat of Air	4
5	IV	Determine the overall heat transfer co-efficient in Agitated vessel	4
6	IV	Determine the overall heat transfer co-efficient for air to water heat exchanger	4
7	IV	Determine the liquid-liquid overall heat transfer coefficient for shell and tube heat exchanger	4
8	IV	Determine the overall heat transfer co-efficient for	4

S. No.	Unit No.	Practical/Exercise (Outcomes in Psychomotor Domain)	Apprx. Hrs. Required
		horizontal double pipe heat exchanger.	
9	IV	Determine the overall heat transfer co-efficient for vertical double pipe heat exchanger.	4
10	V	Calculate the rate of condensation in Drop-wise condensation	4
11	V	Calculate the rate of condensation in Film-wise condensation	4
12	VI	Determine the emissivity using Stefan Boltzmann apparatus	4
13	VII	Determine economy of open pan evaporator.	4
14	VII	Study and compare different types of Evaporators.	4
Total Ho	ours	. 0	56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

- i. Prepare course/topic based presentation for seminars,
- ii. Visit websites of reputed companies making heat exchangers.
- iii. Teacher guided self learning activity
- iv. Organise MCQ/Quiz.

9. SPECIAL INSTRCTIONAL STRATEGY (If Any)

i. Animated videos and drawings/models of heat exchangers and heat exchange phenomenon should be shown

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication
1	Unit Operations of Chemical Engineering	McCabe, Warren L., Julian C. Smith	McGraw Hill Publication, New York 2004 (Seventh Edition)
2	Introduction to Chemical Engineering	L.Badger, Julius T. Banchero	McGraw Hill Publication, New York 2004 (Seventh Edition)
3	Engineering heat transfer	Gupta & Prakash	Nem Chand & Brothers, New Delhi, 1999 (Seventh Edition)
4	Process heat transfer	D.Q.Kern	Tata McGraw Hill Publication, New Delhi, (Reprint 2008)
5	Unit Operation –II	Gavhane, K.A.	Nirali Prakashan, Pune 2009
6	Introduction to chemical engineering	Ghosal Salil k.	Tata McGraw Hill Publication, New Delhi, (Reprint 2006)

B. List of Major Equipment/Materials

i. **Thermal conductivity metal rod apparatus**: Bar-445 mm, Dia 25mm, test length of bar 175 mm, 9 thermocouples on bar and 4 on insulation, Nichrome heater 400 watt, Cooling jacket 90 mm dia, Temp. Indicator 0-200 ^oC, V-meter 0-200 V, A-meter 0-2 Amp

- ii. **Thermal conductivity composite wall apparatus:** Heater Assembly-1000W, Round coil, Sandwiched, Dia-300mm; Test Specimen-Dia. 300mm, MS 20mm, Asbestos 15 mm, Wood 10mm; 8 nos. J type thermocouple, 8 Channel Digital Temperature Indicator; Assembly shall be covered with Wooden Chamber
- iii. Critical radius of insulating material apparatus: Heater 500 W Ni-Cr 500 mm length, Test specimen MS, Dia 50 mm,500mm; Insulation over pipe; J thermocouple 12 nos., Digital temperature Indicator; The whole assembly shall be covered with wooden chamber
- iv. **Specific heat of air apparatus :** 2 inch Cylindrical test section, 0.5 HP air blower, 3 phase 440 V Air heater, U-tube manometer with orifice; Thermocouples
- v. **Agitated vessel:** Tank- 10 litre SS 304 ID 200mm, Height 300mm, 1.5 mm thick, Cover –SS 304, 3 mm thick; Baffles 3 mm thick, 225 mm length, 15 mm width 4 nos., Coil- Copper, 3000 mm, ID 10 mm, OD 12.7 mm 8 turns; Heater 1 KW; Agitator- turbine, shaft 10 mm dia, speed 150 rpm max
- vi. **Double pipe heat exchanger :** Inner tube SS304 -1000mm × 25mm; Outer tube SS304, 1000mm × 25mm, 25 mm glass wool with SS304 cover; Hot and cold water tanks inner SS304, outer MS, 50Litre, Cold water tank, Heater 3 KW; Pumps -2 nos. monoblock 0.5 HP SS304; Rotameter 1-10 lpm, Glass tube, float SS 316
- vii. **Shell and tube heat exchanger**: 1-1 pass; Shell- ID 150 mm SS, 4 baffles with 180 mm spacing, glass wool insulation, Tubes copper 19 nos., ID 9.5 mm, 900 mm Length; Tanks -2 nos.100 litre HDPE; Pumps- 0.25 HP; Rotameters 2nos. 1.5-15 lpm; Thermocouple -4 Nos., Digital temp. Indicator 0-100°C
- viii. **Air to water heat exchanger:** Finned tube OD 20 mm ID 16 mm; 8 fins per inch, OD 45 mm; Water supply 20 lpm, Temp indicator 0-200 ^oC, Water inlet and drain, 0.5 HP blower for air flow, Orifice for 2 inch pipe, Butterfly valve
- ix. **Emissivity apparatus:** aluminium plates, of equal dimensions. Ni-Cr heaters sandwiched in Mica sheets one plate blackbody another natural finish, Dia. 160 mm, thickness 12mm, heater 500W, Digital temp. Indicator
- x. **Open Pan Evaporator:** Pan-Hemispherical SS 304 500mm dia, 3mm thick, Jacket- MS 525 mm dia, 3mm thick; Lagging- glasswool 40 mm with SS sheat cladding, 12.5 mm steam trap

C List of Software/Learning Websites

- i. www.unitoperation.com
- ii. www.nptel.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. D. H. Joshi,** Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- **Prof. M R Acharya,** Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- **Prof. N. N. Hansalia**, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Abhilash Thakur.** Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MASS TRANSFER-I (Course Code: 3340502)

Diploma Programmes in which this course is offered	Semester in which offered
Chemical Engineering	4 th Semester

1. RATIONALE

The operations which involve changes in composition of solutions, are known as the mass-transfer operations. Mass transfer operations are required for preliminary purification of raw materials or final separation of products from by-products. Mass transfer operations are major and important activity in most of the chemical plants. Hence the course has been designed to develop the following competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

• Supervise operation of various equipments for, the mass-transfer operations in chemical process plants.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Discuss fundamentals of mass transfer operation.
- ii. Evaluate diffusivity of gases by using empirical equation and explain effect of pressure and temperature on diffusivity.
- iii. Explain Equilibrium and resistance concept related to mass transfer at fluid surface
- iv. Calculate numerical for absorption based on material balance
- v. Solve problem based on material balance with different condition on ternary diagram
- vi. Explain various equipment uses for liquid extraction
- vii. Explain different states of operation and equipment used for leaching.
- viii. Discuss various membrane types and membrane modules

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits		Examination Scheme						
((In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L	T	P	C	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes (Outcomes in cognitive domain)	Topics and Sub-topics
Unit – I	1a. Describe Importance of ass transfer operation	1.1 Introduction of Mass transfer operations
Fundamental of Mass Transfer	Classify mass transfer operations based on direct contact of two immiscible phases Explain Membrane separation operations	Operations based on direct contact of two immiscible phases Membrane separation operations
	 1d. Distinguish direct and indirect operations 1e. Describe selection of appropriate separation method 1f. Explain fundamental design 	1.4 Direct and indirect operations1.5 Choice of separation method1.6 Fundamental design principles of Mass
Unit – II	principles of Mass Transfer 2a. Differentiate Molecular and	Transfer 2.1 Molecular and Eddy diffusion
Molecular Diffusion in Fluids	Eddy diffusion 2b. Calculate the rate of diffusion in Fluids	2.2 Rate of diffusion in Fluids
Fillids	Distinguish Molar flux, diffusivity and concentration gradient in Fluids Apply the diffusion principal in Fluids	2.3 Molar flux, diffusivity and concentration gradient in Fluids2.4 Applications of diffusion in Fluids.
	Derive diffusivity equation 2f. Describe the effect of various factors on diffusivity 2g. Explain molecular diffusion in fluids for laminar flow	 2.5 Derivation of diffusivity equation (D_{AB}=D_{BA}) 2.6 Effect of concentration, Temperature and pressure 2.7 on diffusivity 2.8 General equation for steady state molecular diffusion in fluids for laminar flow
	 2h. Describe Molecular diffusion in gases 2i. Derive Equation for Steady state diffusion 2j. Evaluate diffusivity of gases using empirical equation 	2.9 Molecular diffusion in gases 2.10 Derive Equation for Steady state diffusion of (a) Component A through non diffusing B and simple numerical (b) Equimolar counter current diffusion of A and B with simple numerical Empirical equation of diffusivity of gases
Unit – III	3a. Explain Equilibrium 3b. Describe Diffusion between	3.1 Concept of equilibrium3.2 Diffusion between phases (two resistance
Interphase Mass Transfer	phases 3c. Describe various mass transfer coefficients using resistance concept 3d. Distinguish mass transfer co-	concept) 3.3 Local and overall two phases mass transfer co-efficient and their uses 3.4 Average overall mass transfer co-efficient
	efficients 3e. Define stage, stage efficiency and cascade	3.5 Stage and stage efficiency and types of Cascade
Unit – IV	4a. Apply concept of absorption	4.1 Industrial application of Absorption

Unit	Major Learning Outcomes (Outcomes in cognitive domain)	Topics and Sub-topics
	4b. Describe the physical	4.2 Equilibrium solubility of gases in liquids
Gas	properties of gases	and effect of temperature and pressure.
Absorption	4c. Explain Raoults law	4.3 Ideal solution and Raoult's law
	4d. Select appropriate solvent	4.4 Solvent for absorption
	4e. Explain Material	4.5 Material balance for one component
	balance in different	transfer
	condition	1. counter current flow
		2. co-current flow
	4f. Select liquid-gas ratio for	3. counter current multistage operation
	absorber	4.6 Minimum liquid-gas ratio for absorber
	4g. Define various	4.7 Real Tray & Tray efficiency-point
	Efficiencies	efficiency, Murphy efficiency, Overall
	41.77	Tray efficiency
	4h. Explain tray tower and	4.8 Tray tower and packed tower
	packed tower	4.0. HETP
	4i. Evaluate various packing	4.9 HETP
	4j. Calculate absorption based on material balance	4.10 Raoult's law and material balance applied
		in gas ab <mark>sorptio</mark> n
Unit – V	5a. Apply the liquid extraction	5.1 Industrial application of Liquid
		Extraction
Liquid	5b. Describe the three component	5.2 Equilibrium for three component system
Extraction	system	5.3 Equilateral triangular co-ordinates system
	5c. Explain equilibrium using	5.3.1System of three liquids-one pair
	triangular co-ordinates	partially Soluble
	5d. Describe the effect of	5.3.2System of three liquids-two pair
	temperature and pressure	partially Soluble
		5.4 Effect of temperature and pressure on solubility
	5e. Select appropriate solvent	5.5 Criteria for choice of solvent
	5f. Distinguish various	5.6 Single stage extraction and multistage
	types of extraction	cross current extraction on ternary
	5g. Describe the material	diagram
	balance for various	5.7 Material balance for single stage,
	stages	multistage- cross current/counter
	5h. Calculate Material	current system
	balance in different	5.8 Problems based on material balance
	conditions	
	5i. Define Various	5.9 Equipment Single stage extractor,
	equipment use in	agitated vessel, flow mixer and settler,
	liquid extraction	spray tower, packed tower and
		centrifugal extractor
Unit – VI	6a. Describe Industrial	6.1. Industrial applications of leaching
	applications	
Leaching	6b. Prepare solids	6.2. Preparation of solid
	Explain the factors affecting	6.3. Temperature of leaching
	leaching	
	6c. Describe different states of	6.4. Methods of operation and equipment for
	operation and equipments	(a) Unsteady state operation
		I. In place operation
		II. Heap leaching
		III. Percolation tanks

Unit	Major Learning Outcomes (Outcomes in cognitive domain)	Topics and Sub-topics			
	(Guttomes in Cogina is domain)	IV. Filter press leaching			
		V. Agitated vessel			
		VI. Leaching by Shanks system			
		(b) Steady state operation			
		I. Leaching during grinding			
		II. Leaching in door type agitator			
		III. Leaching in door balanced tray			
		thickener			
		IV. Continues counter current decantation			
		with flow sheet			
		V. Leaching of vegetable seeds			
		1. Rotacel			
		Kennedy extractor			
		3. Bollman extractor			
		4. Continuous horizontal extractor			
	6d. Explain Material	6.5. Material balance for single stage system			
	balance				
Unit – VII	7a. Describe Membrane	7.1 Introduction and Basic Principle of			
	Separation Process	Membrane Separation			
Membrane	7b. Classify membrane process	7.2 Types of Membrane Processes			
Separation	7c. Describe advantages and	7.3 Advantages and disadvantages of			
	disadvantages	membrane membrane			
	7d. Uses membrane separation	processes			
	processes	7.4 Various applications of membrane			
		separation.			
	7e. Draw the diagram of various	7.5 Various types of membrane and			
	membrane modules	membrane			
	•. ()	Modules with diagram			
		a. Plate and frame			
		b. Tubular			
	-65	c. Spiral woundd. Hollow fiber			
	A /	u. Hollow liber			

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title Teaching Distribu			bution of [Theory Ma	arks
		Hours	R	U	A	Total
			Level	Level	Level	Marks
I	Fundamental of Mass	04	03	02	00	05
	Transfer					
II 🔹	Molecular Diffusion in	07	02	04	03	09
	Fluids					
III	Interphase Mass	05	02	02	02	06
	Transfer					
IV	Gas Absorption	11	02	04	08	14
V	Liquid Extraction	10	02	03	08	13
VI	Leaching	11	02	03	08	13
VII	Membrane Separation	08	02	04	04	10
Tot	al	56	15	22	33	70

Legends: R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as only as a guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical/Exercise 🦊 💆	Approx.
	No.	(Outcomes in Psychomotor Domain)	Hrs.
			Required
1	II	Determine diffusivity of gas-liquid system at room	4
		temperature	
2	II	Determine diffusivity of gas-liquid system with respect to	4
		temperature	
3	II	Determine diffusivity of liquid-liquid system at room	4
		temperature	
4	II	Determine diffusivity of liquid-liquid system at different	4
		temperature	
5	IV	Find out rate of absorption in a tray or packed tower	4
6	V	Determine the efficiency of single stage extraction	4
7	V	Determine the efficiency of two stage cross current extraction	4
8	V	Determine the efficiency of continuous counter current	4
		extraction	
9	V	Prepare ternary diagram for a system of three liquids	4
10	VI	Obtain tie-line data for Acetic Acid, Benzene and water	4
11	VI	Measure recovery of salt using sand-salt mixture in single	4
		stage leaching	
12	VI	Measure recovery of salt using sand-salt mixture in two	4
	7	stage leaching	
13	VI	Calculate efficiency of Leaching by shanks system	4
14	VII	Study and Compare different types of membrane module	4
		with detailed diagram.	
Total H	rs		56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

i. Visit nearby industries and observe the working of mass transfer equipments and collect their specifications

ii. Visit the website of reputed mass transfer equipment manufacturers and prepare a report on these equipments.

9. SPECIAL INSTRUCTIONAL STRATERGY (if any)

i. Show animated videos and drawings of mass transfer equipment

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication
1	Mass Transfer Operations	Robert E. Treybal	Mc Graw- Hill, 3 rd Edition, 1981
2	Unit Operation of Chemical Engineering	McCabe, Warren L., Julian C. Smith	McGraw Hill Publication, New York 2004, 7 th Edition
3	Separation Process Principles	Ernest J. Henley, J. D. Seader, D. Keith Roper	Wiley India, 2 nd Edition, 2005
4	Unit Operations-II	K. A. Gavhane	Nirali Prakashan, Pune, 2009
5	Unit Operations of Chemical Engineering, Volume-1	P. Chattopadhyay	Khanna Publishers, New Delhi, 1995
6	Chemical Engineering, Volume-2	Coulsion and Richardson	Butterworth-Heinemann; 5 th Edition, 2002
7	Introduction to Chemical Engineering	L.Badger, Julius T. Banchero	McGraw Hill Publication, New York, 7 th Edition, 2004

B. List of Major Equipment/Instrument with Broad Specifications

i. Gaseous diffusion system:

Thermostatic bath 2 litre; Temperature controller 0-100 0 C; Vernier 0-100 mm(0.1 mm resolution); Magnetic stirrer with heater 2 MLH; Air blower 0.25 HP

ii. Liquid diffusion system:

1 liter glass beaker, Magnetic stirrer 1 MLH, electrical conductivity sensor & meter to measure conductivity in MHO

iii. Packed column absorber :

75 mm ID, 1 m Glass column, Rasching ring packing; CO₂ cylinder with pressure regulator and rotameter; NaOH circulation system with pump, sump and rotameter

iv. Continuous extractor:

Glass column ID 75mm, OD 87mm, Height 1000mm; Supply tanks(three)-SS 304, 40 litre; Rotameters(two)-0.3 to 3 lpm-Glass tube, SS316 float; 0.25 HP motor with SS 304/316 shaft and blades

v. Leaching apparatus:

Leaching bag-Polypropylene; Glass column Dia. 40 mm, height 400mm with SS 304 cap at both end; Solvent tank SS304-25 litre with 1 KW immersion heater; Collection tank SS 304, 30 litre; Pump- MOC-Polypropylene, 15 lpm flow rate

vi. Glass Separating funnels

-250ml, 500ml ; Burettes-25 ml, 50 ml; Pipettes - 10 ml, 25 ml; Conical flasks- 250 ml, 500 ml; Beakers - 250 ml, 500 ml

C. List of Software/Learning Websites

- i. www.unitoperation.com
- ii. www.nptel.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Harsh B. Shukla**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Upasana T. Singh**, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- **Prof. Jatin. R. Vadher**, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: CHEMICAL PROCESS TECHNOLOGY-II (Code: 3340503)

Diploma programme in which this course is offered	Semester in which offered
Chemical Engineering	4 th Semester

1. RATIONALE

This course provides the essential link between chemistry and the chemical industry. It is vital to develop the comprehensive understanding about the fundamental knowledge and manufacturing process for various chemical products. This course develops the skill to understand and arrange the treatment, reaction and separation steps in a flow diagram of chemical production process. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

• Prepare flow diagram for the manufacturing of various chemical products.

3. COURSE OUTCOME

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- Explain Manufacture of Vegetable oil, Sugar from sugar-cane, Starch from maize and Dextrin from starch
- Describe manufacturing of pulp and paper industries with major engineering problems
- Prepare flow diagram and Explain manufacturing of fuel gases
- Prepare flow diagram and Explain manufacturing of Ethyl alcohol by fermentation, lactic acid from corn sugar, citric acid from molasses and vinegar by Frings' method
- Explain manufacturing of rubber chemicals
- Explain manufacturing of various pharmaceutical products.
- Describe manufacturing process of pesticides
- Explain Production of bromine from sea water

4 TEACHING AND EXAMINATION SCHEME

Teac	ching S	cheme	Total Credits Examination Scheme		Examination Schen					
(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks		Theory Marks Practical Mark		Total Marks
L	T	P	C	ESE	PA	ESE	PA	200		
4	0	4 0	208 06	70 70	30 3	0 40 20	60 30	200		

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Define oil and fat	1.1 Basics of oil and fat
	1b.Describe physical properties of oil	1.2 Physical properties of oil
Natural	1c. Describe carbohydrates	1.3 Introduction to Carbohydrates
Product	1d. Draw flow diagram explain	1.4 Manufacturing Process of
Industries	manufacturing process of	(i) Vegetable oil
	(i)Vegetable oil	(ii) Hydrogenated products of oil
	(ii) Hydrogenated products of oil	(iii) Sugar from sugar-cane
	(iii) Sugar from sugar-cane	(iv) Starch from maize
	(iv) Starch from maize	(v) Dextrin from starch
	(v) Dextrin from starch	
	1e. Distinguish chemicals available	1.5 Chemicals from sea
	from the sea	
	1f. Draw flow diagram describe	1.6 Production of bromine from sea
	manufacturing process of bromine	water
	from sea water.	45
Unit – II	2a. Explain pulp and paper	2.1. Fundamentals of Pulp and paper
Pulp and	2b. Distinguish methods of pulp	2.2. Methods of pulp production
Paper	production	2.3. Sulphate (Kraft) pulp process
Products	2c. Describe various steps of pulp	2.4. Manufacturing of paper using
	production	Fourdrinier machine
	2d. Draw flow diagram explain	
	manufacturing of paper using	
	Fourdrinier machine	
	2e. Identify major engineering	2.5. Paper manufacturing
	problems of paper manufacturing	
Unit – III	3a. Classify fuels	3.1 Fuels:
	3a1. List types, sources, uses of	
Fuel and	fuels	
Industrial	3b. List types, sources, uses of	3.2 Important industrial gases:
Gases	industrial gases	types, sources, uses
		225 1 66 1
	3c. Draw flow diagram explain	3.3 Production of fuel gases
	manufacturing process of fuel gases	(i) producer gas
		(ii) water gas
(A)		(iii) coke oven gas
	2d Describe industrial alectrolytic	(iv) natural gas
	3d. Describe industrial electrolytic	3.4 Industrial electrolytic processes
	process 3e. Describe Cryogenic for producing	3.5 Cryogenic
	industrial gases	5.5 Cryogome
Unit – IV	4a. Classify fermentation	4.1. Fermentation
Fermentatio	4a1.List types of fermentation	I chilehaddon
n Industries	4b. Draw flow diagram explain	4.2. Manufacture of
	manufacturing	(i) Ethyl alcohol by fermentation
	(i) Ethyl alcohol by fermentation	(ii) Lactic acid from corn sugar
	(ii) Lactic acid from corn sugar	(iii) Citric acid from molasses
	(11) Lactic acid from corn sugar	(III) Citile acid from morasses

Unit	Major Learning Outcomes	Topics and Sub-topics
Cint	(in cognitive domain)	
	(iii) Citric acid from molasses	(iv) vinegar by Frings' method
	(iv) vinegar by Frings'method	
	4c. Describe use of biotechnology in	4.3. Biotechnology in Chemical
	chemical engineering	Engineering
$\mathbf{Unit} - \mathbf{V}$	5a. Define rubber	5.1 Fundamentals of rubber
	5b. Describe production of natural	5.2 Natural rubber
Rubber	rubber	5.3 Synthetic rubbers
Chemicals	5b1.List properties and uses of	
	natural rubber	
	5c. Classify synthetic rubbers	
	5c1. List uses of synthetic rubber	5.4.6
	5d. Explain compounding procedure for	5.4 Compounding of rubber
	rubber	5.5 Manufacturis as s
	5e. Draw flow diagram for	5.5 Manufacturing of
	manufacturing of	(i) styrene butadiene rubber
	(i) styrene butadiene rubber(ii) poly butadiene rubber	(ii) poly butadiene rubber (iii) chloroprene
	(iii) chloroprene	(iv) nitrile rubber
	(iv) nitrile rubber	(iv) intine rubber
Unit – VI	6a. Classify pharmaceutical products on	6.1. Pharmaceutical products
	the basis of use (with examples)	o.r. Tharmaceutical products
Pharmaceut	the basis of use (with examples)	
icals	Ch. Distinguish Language at June	C.1. Lucia estant Direct
10012	6b. Distinguish Important drugs	6.1. Important Drugs
		(i) Antipyretic (ii) Anaesthetic (iii) Analgesic (iv) Anti-malarial
	•.0	(v) Anti-TB drugs (vi) Antibiotics
		(vii) Antihistamine (viii) Vitamins
	6c. Draw flow diagram and explain	6.3(i) Antibiotics, (ii) Aspirin,
	manufacturing of (i) Antibiotics,	(iii) Paracetamol
	(ii) Aspirin, (iii) Paracetamol	(iii) I didectamor
Unit-VII	7a. Describe the important	7.1 Important pesticides:
	Pesticides	(i) Algiscide, (ii) Bactericide,
Pesticides	350000	(iii) Fungicide, (iv) Herbicide,
		(v) Insecticide (vi) Biopesticide
	7h Formulate mosticides	, , , ,
	7b. Formulate pesticides	7.2 Formulation of Pesticide
	7c. Draw block diagram and explain	7.3 Manufacturing process of
	manufacturing of	(i) methyl bromide
	(i) methyl bromide	(ii) 2-4 Dichlorophenoxy acetic acid
	(ii) 2-4 Dichlorophenoxy acetic	
	acid	

4

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.	Cint Title	Hours	R Level	U Level	A Level	Total	
1.	Natural Product Industries	11	04	06	04	14	
2.	Pulp and Paper Products	06	02	04	01	07	
3.	Fuel and Industrial Gases	08	03	05	02	10	
4.	Fermentation Industries	08	02	06	02	10	
5.	Rubber Chemicals	08	02	06	02	10	
6.	Pharmaceuticals	09	04	06	02	12	
7.	Pesticides	06	02	03	02	07	
	Total	56	19	36	15	70	

Legends:R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No. Unit No.		Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx. Hrs. Required
1	I	Estimate Acid value in oil sample	04
2	I	Estimate iodine value in oil sample	04
3	I	Prepare starch from maize	04
4	I	Extract vegetable oil from seed	04
5	I	Prepare Glycerine	04
6	I	Estimate NaCl content in sea water	04
7	II	Prepare pulp from bamboo	04
8	III	Estimate moisture, volatile matter and ash content in fuel	04
9	IV	Prepare alcohol	04
10	IV	Prepare citric acid	04

11	IV	Prepare vinegar 04	
12	V	Analyse rubber products 04	
13	VI	Prepare Aspirin	04
14	VI	Prepare Paracetamole 04	
Total Hours 5		56	

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Prepare course/topic based presentations for seminars
- ii. Visit websites of reputed process plant industries

9. SPECIAL INSTRUCTIONAL STRATEGY (If Any)

- i. Arrange visit to nearby industries
- ii. Show vides/animation films/photographs of different process plants.
- iii. Give internet based assignments
- iv. Give mini projects on preparing feasibility report for preparing different chemicals on commercial scale.

10. SUGGESTED LEARNING RESOURCES

A. List of Books

Sr.	Title of Books	Author	Publication
No.			
1	Outlines of	M. Gopala Rao,	Affiliated East West Press
	Chemical	Marshall Sittig	(Pvt) Ltd-New Delhi, 3rd
	Technology		edition
2	Shreve's Chemical	Austin G.T.	McGraw Hill publication –
	Process Industries,	**	New Delhi, 5th edition
3	Chemical	G.N. Pandey and Shukla	Vani Books Company
	Technology -Vol. I		-Hyderabad, 2nd edition
	and II		
4	A Text Book on	Rao B. K. B.	Khanna Publishers, New
	Petrochemicals		Delhi,
			2nd edition

B. List of Major Equipment/ Instrument with Broad Specifications

- i. Glassware: Conical flask, burette, pipette, RBF, measuring cylinder, beaker
- ii. Glass Assembly: RBF, reaction vessel, condenser, separating vessel
- iii. Burner
- iv. Weight balance (minimum 0.1gm)
- v. Heating and cooling bath

C. List of Software/Learning Websites

- i. www.epa.gov/sectors/sectorinfo/sectorprofiles/chemical.html
- ii. www.naturalproductsexpoindia.com/
- iii. www.andritz.com/pulp-and-paper/pp-pulp-production.htm
- iv. ewww.linde-gas.com/en/products_and_supply/gases_fuel/index.htm

- v. http://chemistry.about.com/od/biochemistry/a/carbohydrates.htm
- vi. www.azom.com/article.aspx?ArticleID=3580
- vii. www.iisrp.com/WebPolymers/00Rubber_Intro.pdf
- viii. http://www.niehs.nih.gov/health/topics/agents/pesticides/
 - ix. http://levine.sscnet.ucla.edu/papers/imbookfinal09.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. R. P. Hadiya**, Lecturer, Chemical Engineering, Govt. Polytechnic-Rajkot
- **Prof. S. K. Charola**, Lecturer, Chemical Engineering, Sir BPIT-Bhavnagar
- **Prof. N. N. Hansalia**, Lecturer, Chemical Engineering, Govt. Polytechnic-Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Abhilash Thakur**. Associate Professor, Department of Applied Sciences,
- **Dr. Bashirullah Shaikh**, Assistant Professor, Department of Applied Sciences,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: POLLUTION CONTROL & EFFLUENT TREATMENT (Code: 3340504)

Course code: 3340504

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	4 th Semester

1. RATIONALE

Study of environmental pollution, related to the chemical industry is must to understand various types of pollutions and its preventive and control majors. The study of this course would help engineers in operating diverse pollution control equipments for controlling gaseous, water and land pollution. They have to perform sampling and analysis of samples from various sources in the industry. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

• Perform sampling, analysis and treatment of pollutants to control pollution

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Define & classify pollution and pollutant (Air, Water, solid)
- ii. Describe removal of pollutants by applying various treatment methods
- iii. Identify Sources of Pollution
- iv. Conduct Environmental audit and ISO 14001

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits		Examination Scheme				
	In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L	T	P	C	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	130

Legends: L -Lecture; T -Tutorial/Teacher Guided Student Activity; P -Practical; C - Credit; ESE-End Semester Examination; PA -Progressive Assessment

5. COURSE DETAILS

T1.'4	Major Learning Outcomes	Topics and Sub-topics
Unit	(in cognitive domain)	•
Unit – I	1a.Define pollution and	1.1 Introduction of pollution and pollutants
	pollutant	
Basics of	1b. Classify pollutants &	1.2 Types of pollution and pollutants
Environmental	pollution	
Pollution	1c.Identify Sources of	1.3 Sources of air, water, noise, radioactive and
	Pollution	land pollution
	1d. Explain Effect of	1.4 Effects of air, water, noise, radioactive and
	pollution	land pollution
Unit – II	2a. Explain Sampling of air	2.1 Ambient air sampling
	pollutants	
Air Pollution	2b. Distinguish gaseous and	2.2 Sampling of gaseous air pollutants and
	particulate pollutants	particulate poll <mark>utant</mark> s
	2c. Describe Construction and	Particulate control equipments
	working of Particulate	2.3 Gravity Settling Chamber, Cyclone
	control equipments	separator, Fabric Filter, Wet Scrubber and
		Electrostatic Precipitator
	2d. Describe Thermal	2.4 Thermal incineration
	incineration	
	2e. List Methods for control	2.5 Methods for control of Sulfur dioxide
	of Sulfur dioxide emission	emission
	2f. Apply control methods for	2.5.1 Extraction of sulfur from fuels
	gaseous air pollutants from	2.5.2Hydrodesulphurization of coal
	Sulfur.	2.5.3 Desulphurization of fuel oils
	2g. Apply control methods for	2.5.4Desulphurization of flue gases by Dry
	gaseous air pollutants from	processes(using metal oxides and
	Nitrogen Oxides.	activated carbon) and wet processes(wet
	2h. Apply control methods for carbon monoxide	scrubbing methods)
	2i. Describe removal of	2.6 Methods for control of Nitrogen Oxides
	pollutants by applying	-
. (control methods for	2.6.1 Absorption of NOx
. 1	hydrocarbons	2.6.2 Adsorption of NOx
		2.6.3 Catalytic reduction
_ ^ ~		2.7 Control of carbon monoxide
		2.8 Control of hydrocarbons
Unit – III	3a.Explain characteristics of	characteristics of water
Water Pollution	water	3.1 Dissolved oxygen, BOD,COD, VM,
		Suspended Matter, Dissolved solids, pH
	3b. Distinguivish Waste water	3.2 Water sampling methods
	sampling methods	3.2.1 Grab sampling
	2. Describ	3.2.2Composite sampling
	3c. Describe removal of	3.3. Waste water treatment methods
	pollutants by applying	3.3.1 Primary treatment
	Waste water treatment methods	3.3.1.a Pretreatment 3.3.1.b Sedimentation
	menious	
		3.3.1.c Floatation

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	0.00
		3.3.2Secondary treatment
		3.3.2.a Aerobic process
		3.3.2.b Anaerobic process: Activated sludge
		process and trickling filter
	3d. Describe removal of	3.4 Suspended solids treatment methods
	pollutants by applying	
	various treatment methods	3.4.4Microstraining
	on suspended solids	3.4.5 Coagulation
	3e.Describe removal of	3.4.6Filtration
	pollutants by applying	
	various treatment methods	3.5 Dissolved solids and treatment methods
	on dissolved solids	
	3f. List treatment methods for	3.5.4Ion exchange
	dissolved solids	3.5.5 Reverse Osmosis
	3g. Describe facultative	3.5.6Electrolysis
	ponds	.60°
	3h. Explain oxidation and	3.6 Facultative ponds
	disinfection	
		3.7 Chemical oxidation/Disinfection
	3iExplain Sludge processing	3.8 Thickening, Digestion, Conditioning,
	_/	Dewatering, Oxidation and ultimate
		sludge removal
	3j. Describe Effluent treatment	3.9 Effluent treatment plant- ETP
	plant drawing schematic	•
	block diagram	
	3k. List out norms of GPCB	3.10 Norms of GPCB for potable water
	for potable water	1
Unit – IV	4a. Define solid waste	4.1. solid waste
Solid Waste	4b. Classify solid waste	
Management	4c. Explain all methods of	4.3. Methods of solid waste disposal
Ü	solid Waste Disposal	4.3.1 Open Dumping
	. usee Disposur	4.3.2 Sanitary Land filling
		4.3.3 Incineration
	·	4.3.4 Compositing
		4.3.5 Reuse, recovery and recycling
Unit – V	5a. Describe Procedure for	5.1 Environmental audit
Environmental	Environmental Audit	5.1.1 Procedure for environmental audit
audit and ISO	5b. List ISO 14001 norms	5.2 ISO 14001
14001	5c. Describe Procedure for	5.2.1 Benefits of ISO 14001
	applying ISO 14001 norms	5.2.2 ISO 14001- Assessment process

6. SUGGESTED SPECIFICATIONTABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Title Distribution				of Theory Marks		
		Teaching	R	U	A	Total		
		Hours	Level	Level	Level	Marks		
I	Basics of Environmental	08	06	08	00	14		
	Pollution							
II	Air pollution	14	04	10	08	22		
III	Water pollution	12	04	10	06	20		
IV	Solid Waste	04	02	03	02	07		
	Management							
V	Environmental audit and	04	02	02	03	07		
	ISO 14001				.A	•		
Total I	Hrs	42	18	33	19	70		

Legends: R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES / PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx. Hrs. Required
1	I	Prepare detail charts of various Pollutants and sources of pollution	02
2	II	Remove suspended Impurities from air using cyclone system	02
3	II	Remove suspended Impurities from air using fabric filter	02
4	III	Determine hardness (Temporary and Permanent hardness) of given water sample	02
5	III	Determine COD of the given effluent sample	02
6	III	Measure suspended particles in liquids using Turbidity	02

Sr. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx. Hrs.
		meter	Required
7	III	Determine hydrogen ion concentration (pH) of sample using pH meter.	02
8	III	Determine BOD of given sample	04
9	III	Determine Dissolved Oxygen in effluent sample	02
10	III	Determine total dissolved solids in given effluent sample using heat treatment	02
11	III	Determine chloride concentration in given effluent sample using heat treatment	02
12	IV	Remove suspended solid by coagulation.	02
13	IV	Prepare chart for treatments of different solid waste	02
14	V	Prepare Environmental Audit report for any Chemical Industry	04
Total Hrs	3	1-0	32

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Visit to websites of different manufacturer of effluent treatment equipments and prepare a report.
- ii. Visit to websites of pollution control boards of different states/countries and study their norms and regulations

9. SPECIAL INSTRUCTIONAL STRATEGY (If any)

- i. Show video film of an ETP and on other pollution control measures.
- ii. Arrange visit to nearby solid waste disposal site/segregation plant/incinerator
- iii. Arrange visit to nearby Pollution Control Board/Effluent treatment plants

10. SUGGESTED LEARNING RESOURCES

A. List of Books

S.	Title of Books	Author	Publication
No.			
1	Environmental Pollution	Rao C. S.	New age international Pvt.
	control		Limited, 2 nd edition
2	Pollution Control in Process	Mahajan S. P.	Tata Mc GrawHill,
	Industries		New Delhi, 21 st reprint, 2008
3	Text Book of Environmental	Dr. Bhatia H. S.	Galgotia Publication, 1 st
	Pollution and Control		edition, New Delhi
4	Environmental Engineering	Pandey G. N.,	Tata Mc GrawHill,
		Carney G. C.	New Delhi

B. List of Major Equipment/Materials

- i. Glassware: Titration set up, crucible, beaker
- ii. **pH meter**: pH range-2.00 to +16.00, Resolution: 0.01, Accuracy: ±0.02, mV range: ±1999 mV, Temperature range: -10 to +105°C

Course code: 3340504

- iii. **Turbidity mete range:** 0 10,000 NTU, Principle of Operation-Nephelometric, Ratio (Color Correction): Full Time ON or OFF, Accuracy: ± 2% of reading plus 0.01 NTU (0 to 1000 NTU), Response Time: less than 6 seconds ,Sample Size: 30 ml
- iv. **Incubator (BOD set up):** Chamber volume:285.0 ltrs, range :+50C to 600C, controller accuracy:+/-0.50C set value of temp., PID Control: microprocessor based PID controller
- v. **Cyclone separator:** 20" diameter cyclone dust collector,3" carbon steel straight wall and a 38" carbon steel cone tapering to an 8" x 8" discharge, 3" inlet and 3" exhaust. Splits in the middle for easy clean out
- vi. **Weighing machine :** Digital min. measurement 1 microgram

C. List of Software/Learning Websites

- i. http://www.cosmolearning.com/courses/fundamentals-of-environmental-pollution-and-control-401/video-lectures/
- ii. http://www.answers.com/topic/air-pollution
- iii. https://en.wikipedia.org/wiki/Water_pollution
- iv. http://www.water-pollution.org.uk/causes.html
- v. http://www.acsregistrars.com/iso14001.asp

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. N. N. Hansalia**, Lecturer in Chemical Engineering, Government Polytechnic,
- **Prof.** (Mrs.) K. J. Sareriya, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot
- **Prof.** (Mrs.) Parul K. Patel, Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. Abhilash Thakur, Associate Professor, Dept. of Applied Sciences
- Prof. Bashirulla Shaik, Assistant Professor, Dept. of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: SAFETY AND HAZARD MANAGEMENT IN CHEMICAL INDUSTRY

(Code: 3340505)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	4 th Semester

1. RATIONALE

Chemical Industries are known as the most dangerous and hazardous industries since long. Varieties of conditions are present in chemical industries which may lead to different type of industrial accidents. Bhopal MIC leak accident is a world famous industrial accident which also happened in a chemical plant of Union Carbide Company in which thousands died and many got different diseases. Most of the industrial accidents are due to the human error or ignorance and responsible for the major losses to the industries and humanity. Use and handling of certain chemicals is also found to be dangerous as it may lead to health hazards. It is therefore essential for the technician to know about hazards, accidents, safe handling of chemicals, and operation of plant equipment and transportation of chemicals. Hence the course has been designed to develop this competency and its associated cognitive, practical and affective domain learning outcomes.

2. COMPETENCY

The course should be taught and curriculum should be implemented with the aim to develop required skills so that students are able to acquire following competency:

Handle chemicals and operate chemical plant safely

3. COURSE OUTCOME

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Explain Indian and International Safety standards.
- ii. Identify the causes of accident and explain various engineering control methods
- iii. Explain storage, handling and transportation of hazardous materials.
- iv. Classify fire extinguishing agents and methods
- v. Explain risk assessment methods.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme					
	(In Hou		(L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks
L	T	P	C	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	130

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

	Major Learning	
Unit	Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Describe importance	1.1 Importance of Industrial Safety
Introduction	of safety in Industry	-
to Industrial		1.2 Types of hazard
Safety and Hazards		(a) Chemical hazard
Hazarus		(b) Thermal hazard
	1b.Classify the hazards	(c) Electrical hazard
	y	(d) Mechanical hazard
		(e) Vibrational hazard
		(f) Biological hazard
	1 5 1 7 1 1	(g) Radioactive hazard
	1c. Explain Indian and	1.3 Safety and health Standards
	International safety	1.3.1 Indian Standards & codes for safety &
	standards	health 1.3.2 International standard: OHSAS 18001
Unit – II	2a. Classify chemical	2.1 Classification of Chemical Hazards and their
Chemical	hazards & their	control
hazards	control	2.2 Chemicals as a cause of occupational
and Their	2b.Explain occupational	diseases and poisoning
Control	diseases and	2.3 Prevention of diseases due to chemical effect
Control	poisoning	2.3 Trevention of discuses due to chemical effect
	2c. Apply preventive	
	measures of diseases	
	2d.Describe safety	2.4 Safety aspects in plant layout, Ventilation
	aspects in plant layout	and
	2e. Identify different	lighting
	colour codes for	2.5 Color codes and symbols for safety in
	chemical plants	chemical plants
		(a) Classification of Color codes and
		symbols
	. ()-	(b) Color codes for gas cylinders
		(c) Color codes for pipelines
	2f. Classify Personal	2.6 Personal Protective Devices (PPDs)
	Protective Devices	(a) Non respiratory
	2g.List Personal	(b) Respiratory
	Protective Devices in	
***	each	
Unit – III	3a. Discuss characteristics of	3.1 Important characteristics and chemical
Safe	hazardous chemicals	reaction of 3.2 hazardous chemicals like
Handling of Hazardous	nazardous chemicals	(a) Chlorine
Chemicals		(a) Chlorine (b) Nitric Acid
Chemicals		(c) Ammonia
		(d) Carbon Monoxide
		(e) Caustic Soda
		(f) Phosphoric Acid
		(-) 1 mosphorit 11010

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
		(g) Sulfuric Acid (h) HCl
	3b. Handle hazardous chemicals for Storage, Handling & Transportation	3.2 Storage, Handling & Transportation of hazardous chemicals
Unit – IV Fire Hazards and their	4a. Describe Fire hazards 4a1. List the causes of Fire hazards	4.1.Fire hazards & their causes
Prevention	 4b. Explain fire triangle 4c. Describe Classes of fire 4d. Describe fire extinguishers 4e. List types of extinguishers 4f. Describe 	 4.2.Fire Triangle 4.3.Classes of fire 4.4. Fire extinguishers 4.4.1 Classes of fire & types of extinguishers 4.4.2 Construction and working of fire extinguishers 4.4.3 Methods of their applications
	Construction and working of fire extinguishers 4g. Describe Methods of their applications for fire extinguishers	
Unit – V Hazard Identificatio n and Risk	5a. Explain hazard identification methods	5.1 Hazard identification methods : a) Hazard Operability study (HAZOP), b) Hazard Analysis (HAZAN)
Assessment	5b. List risk assessment methods 5b1Explain risk assessment methods	5.2 Risk Assessment methods:a) Failure mode and effect analysis (FMEA)b) Fault Tree analysis (FTA)c) Event Tree analysis (ETA)

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

			Distribution of Theory Marks			ırks
Unit	Unit Title	Teaching Hours	R Level	U Level	A Level	Total Marks
I	Introduction to Industrial Safety and Hazards	06	4	4	2	10
II	Chemical hazards and Their Control	14	10	8	6	24
III	Safe Handling of Hazardous Chemicals	06	4	4	2	10
IV	Fire Hazards and their Prevention	06	4	4	2	10
V	Hazard Identification And Risk Assessment	10	8	6	2	16
Total		42	30	26	14	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only a general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr.No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Apprx. Hrs. Required
1	I	Prepare a chart of Indian safety standards	02
2	I	Identify different hazards in a given chemical plant	02
3	II	Identify different chemical hazards in a given chemical plant	02
4	II	Identify colour codes for pipelines	02
5	II	Identify colour codes for gas cylinders	02
6	II	Identify different safety symbols for chemical industry	02
7	II	Demonstrate Personal Protective Devices	02
8	III	Prepare a handouts of safe handling practices for hazardous chemicals	04

Sr.No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Apprx. Hrs. Required
1	I	Prepare a chart of Indian safety standards	02
2	I	Identify different hazards in a given chemical plant	02
9	IV	Demonstrate Fire triangle and classes of fire	02
10	IV	Demonstrate construction and working of different fire extinguishers	04
11	V Apply HAZOP method using a case study		02
12	V	Apply Risk Assessment method for a chemical plant	
Total Hrs		28	

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities:

- i. Study of Fire extinguishers / Visit of a nearby fire station
- ii. Study of personal protective equipments / visit to nearby industry
- iii. Preparation of Material Safety Data Sheet of hazardous materials
- iv. Visit to websites of reputed fire and safety equipment suppliers and study of features of their equipment/instruments/tools.

9. SPECIAL INSTRUCTIONAL STRATEGY (IF ANY)

- i. Show different video/Animated films about functioning of different safety equipment/fire prevention equipment
- ii. Discuss case studies of major industrial disasters/accidents and cause for them.

10. SUGGESTED LEARNING RESOURCES

A. List of Books

Sr. No.	Title of Books	Author	Publication	
1	Manual of Chemical Technology, Chemtech-I	D.Venkateswarlu, K.R.Upadrashta, K.D. Chandrasekaran	Chemical Engineering Education Development Centre, IIT, Madras, 1975	
2	Fundamentals of Industrial Safety & Health	Dr. K. U. Mistry	Siddharth Prakashan, Ahmadabad	
3	Chemical Process Safety: Fundamentals with application	Daniel A. Crowl, Joshef F. Louvar	3 rd Edition, 2011, Prentice Hall, USA,	
4	Industrial Safety Management	N. K. Tarafdar, K. J. Tarafdar	Dhanpatrai and Co.Ltd., New-Delhi, 1 st Edition, 2012	
5	Industrial safety management	L M Deshmukh	Tata McGraw Hill, New Delhi, 2006	
6	Industrial Safety, Health & Environment management	Sunil S. Rao, R.K. Jain	Khanna Publishers, New Delhi, 2006	

B. List of Major Equipment/Materials

- i. Fire Extinguishers
 - CO₂ type, A, B, C type, Dry chemical powder type Foam type- 9 litre, operation-inverted, ISS-933, Class B fire
- ii. Water type-CO₂ gas pressure, 9 litre, operation-upright, ISS-940, Class A fire
- iii. DCP type- 1,2,5 or 10 Kg, operation-upright, ISS-2171, Class B and C fire
- iv. Soda acid type-9 litre, operation-inverted or upright, ISS-934, Class B and C fire
- v. Respiratory & Non-respiratory personal protective devices:
- vi. Safety goggles, face screens, Industrial safety helmets, hairnets and fire fighters helmets, Earplugs, earmuffs, Gloves, Safety boots and shoes with protective toecaps and penetration-resistant, Apron, Chemical suit

C List of Software/Learning Websites

- i. https://www.osha.gov
- ii. https://www.iso.org
- iii. https://www.bis.org.in
- iv. http://www.iffco.nic.in/applications/brihaspat.nsf
- v. http://sp.ehs.cornell.edu/lab-research-safety/laboratory-safety-manual/Pages/ch8.aspx

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. Mukesh B. Dhangar**, Lecturer in Chemical Engineering, Shri N. G. Patel Polytechnic, Isroli Afwa.
- **Prof. Manish R. Nasit**, Lecturer in Chemical Engineering, Shri N. G. Patel Polytechnic, Isroli Afwa
- **Prof. Nitin N. Hansalia**, Lecturer in Chemical Engineering, G. P. Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur, Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences