GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INDUSTRIAL MANAGEMENT (COURSE CODE 3350501)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	5 th Semester

1. RATIONALE

Diploma chemical engineer has to manage the production as a responsible chemical technician and first line supervisor in the industries. They have to apply principles and techniques of management to utilize the human resources and manage the processes and operations in best possible way. They have to optimize the resource utilisation and apply the managerial aspects in cost reduction and different problem solving activities. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. LIST OF COMPETENCY

The course should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency

• Apply managerial skills to enhance efficiency of production.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Manage human resources using system and organization concepts
- ii. Manage Inventory applying concepts of material management
- iii. Control and monitor production by applying management techniques
- iv. Plan and implement projects applying management techniques
- v. Perform and use value analysis for cost reduction

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Cred		Total Credits	Examination Scheme					
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	100
3	0	0	3	70	30	00	00	100

 $\label{eq:Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit; ESE - End Semester Examination; PA-Progressive Assessment$

Unit	Major Learning Outcomes	Topics and Sub-topics	
	(in cognitive domain)		
Unit I	1a. Explain concepts of system	1.1 Definition of system	
Concept of	1a.1 State Types of systems	1.2 Types of systems	
System and		1.3 System parameters	
Management		1.4 System variable	
		1.5 System behavior	
	1b. Discuss management and	1.6 Fundamentals of management	
	Explain its functions	1.7 Functions of management	
Unit II	2a Describe management structure	2.1 Definition Goals Factors	
Ont n Organization	2h Explain various factors for structure	considered in formulating structure	
Structure and	2c. Describe various management	2.2 Division of labor Contenand	
Organizational	processes	2.2 Division of labor, Scalar and	
Dynamics		Tunctional processes, Span of control,	
Dynamics		Delegation of authority, Centralization	
	21 Classifie the energy institution	and Decentralization	
	2d. Classify the organization	2.5 Types, advantages, disadvantages,	
	2e. Apply SwO1 analysis of	nexibility and applications of	
	organizational structure	2.4 Organization structure	
	Organizational culture	2.4 Organizational culture and factors	
	22 Discuss morel and relate it	anecting organization culture	
	2g. Discuss moral and relate it	2.5 Moral: lactors affecting moral	
	2h Identify factors offecting	2.6 Relationship between moral and	
	ioh satisfaction	2.7 Effect of high and low morel	
	job sausraction	2.7 Effect of high and low moral	
		2.8 Job satisfaction, factors influencing	
		job satisfaction	
Unit III	3a. Discuss importance of material	3.1 Definitions, Functions, Importance	
Material	management	of material management, Relationship	
Management		with other departments	
	3b. Explain purchase procedure and	3.2 Objectives of purchase, Purchase	
	system	systems, Purchase procedure, Terms	
		and various forms used in purchase	
		department	
	3c. Classify stores	3.3 Functions of storekeeping	
	3c.1 List out various functions	classification of stores as centralized	
	of storekeeping	and decentralized with their	
	³ d. Compare methods of storekeeping	advantages, disadvantages and	
		application	
	3e. Describe functions of storekeeper	3.4 Functions of store keeper,	
	31. List Types of records types of storage	Types of records maintained by store,	
	equipment	various types of storage equipment,	
		Codification of stores	
	3g. Discuss Objectives of inventory	3.5 Definition of inventory control,	
	2h Distinguish inventory analysis and	Derivation of expression for EQO	
	Sii. Distinguisii inventory analysis and	APC analysis, other modern methods	
	inventory models	Abe analysis, other modern methods	
		of allalysis	
		Willson's model Deplenishment	
		model Two bin model	
		1	

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Cint	(in cognitive domain)	
Unit IV Management Techniques	4a. Explain objectives and applications of PPC and CPM, PERT	 4.1 Meaning, features, objectives of (1) PPC(Production, planning and control) (2) CPM(Critical path method) (3) PERT(Programme Evaluation and Review Technique)
	4b List out functions of PPC	4.2 Functions of PPC with necessary forms used in it
	4c Calculate critical ratio using Gantt charts	4.3 Types of productions, Calculation of Economic Batch Quantity (EBQ), Critical ratio scheduling and Gantt charts
	4d. Draw network diagram and determine its critical path	4.4 Different terms used in network diagram by CPM/PERT
	4e. Determine floats and explain crashing of network	 4.5 Draw network diagram for a real life project containing 10-15 activities, Computation of LPO, EPO 4.6 Determination of critical path on network
		4.7 Floats, its types and determination of floats4.8 Crashing of network and its application
	4f. Describe concept of value analysis with its importance and various method	4.9 Concept of value analysis, important methods used in value analysis, VA flow diagram
Unit V	5a. Describe various provisions of Factory	5.1 Factory act and its important
Factory Act and	act and its important provisions	provisions
Laws		5.2 Workman Compensation Act its important provisions
		5.3 Industrial Dispute Act and its important provisions

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks					
		Teaching	R	U	Α	Total		
		Hours	Level	Level	Level	Marks		
	Concept of System and Management	4	02	05	00	7		
II	Organization Structure and Organizational Dynamics	08	05	06	03	14		
III	Material Management	13	07	07	07	21		
IV	Management Techniques	13	06	07	08	21		
V	Factory Act and Laws	04	03	02	02	7		
Tot	al	42	23	27	20	70		

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

i.Course/topic based presentation

ii.Group discussion

8. SPECIAL INSTRCTIONAL STRATEGY (If Any)

- i. Give real life or fabricated case studies related to different managerial problems faced in chemical industries and ask students to identify reasons for problem and suggest probable solutions. Have Group Discussions on these solutions.
- ii. Show motivational videos related to human resource management.
- iii. Use role play method to teach proper methods of dealing patiently with difficult subordinates/colleagues/ Seniors.

9. SUGGESTED LEARNING RESOURCES

A.	LIST OF DOOKS:		
Sr. No.	Title of Books	Author	Publication
1	Factory Management & business organization	A.S Despande	Vora & Co. Publishers Pvt. Ltd., Mumbai, 1962
2	Business organization & management	M.C.Shukla	S. Chand & Co., New Delhi, 1970
3	Industrial Engineering & Management	O. P. Khanna	Dhanpat Rai Publications, New Delhi, 1980
4	CPM & PERT principles and Applications	L.S.Srinath	3 rd Edition Affiliated East-West Press Private Limited, New Delhi, 1971

B. List of Software/Learning Websites

- i. www.idc.iitb.ac.in/~chakku/dm/06_Pert%20cpm.ppt
- ii. www.clib.dauniv.ac.in/E-Lecture/PERT-CPM.pdf
- iii. www.pitt.edu/~super7/30011-31001/30961.ppt
- iv. www.newagepublishers.com/samplechapter/001386.pdf
- v. www.unesco.org/education/aladin/paldin/pdf/course02/unit_14.pdf
- vi. www.du.ac.in/fileadmin/DU/Academics/course_material/EP_08.pdf

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. J. R .Vadher**, Lecturer in Chemical Engineering, Sir B.P.T.I Bhavnagar
- Prof. S. K. Charola, Lecturer in Chemical Engineering, Sir B.P.T.I Bhavnagar,
- Prof. P. H. Shukla, Lecturer in Chemical Engineering, Sir B.P.T.I Bhavnagar
- Prof. N. N. Hansalia, Lecturer in Chemical Engineering G. P. Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MASS TRANSFER-II (COURSE CODE: 3350502)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	5 th Semester

1. **RATIONALE**

Diploma Chemical engineer have to supervise the preliminary purification of raw materials or final separation of products from by-products. They have to deal with changes in composition of solutions known as the mass-transfer operations. The large numbers of towers used for petroleum refining are examples of mass transfer operations. A substantial number of the unit operations of chemical engineering are concerned with the problem of changing the compositions of solutions and mixtures through methods involving chemical reactions. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. **LIST OF COMPETENCY**

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Perform separation operations for purification of raw materials and products

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Operate equipments for gas-liquid operations.
- ii. Perform distillation operations.
- iii. Calculate the product rate and number of trays for binary distillation.
- iv. Calculate various terms associated with humidity.
- v. Operate drying systems.
- vi. Use the concept of adsorption and ion exchange.
- vii. Operate various crystallisers.

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme		Total Credits		Examination Scheme				
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		
L	Т	Р	С	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics						
	1a Describe importance of Gas-	1.1. Importance of Gas-Liquid operations						
Unit – I	Liquid operations	In importance of Cas Enquite operations						
Equipment	1b. Classify equipments for Gas-	1.2 Classification of equipments for Gas-Liquid						
for Gas	Liquid operations	operations						
Liquid	1c. Describe construction of	1.3 Gas dispersed						
Operations	equipments with diagram of 1.3 &	1.3.1 Sparged vessel						
	1.4	1.3.2 Mechanically Agitated Vessel						
	1d. Explain working principle and	1.3.3 Tray tower						
	operation of equipments with	1.3.3.1 Types of trays						
	sketches of 1.3 & 1.4	1.3.3.3 Tray efficiency						
		1.4 Liquid dispersed						
		1.4.1 Venturi scrubber						
		1.4.2 Wetted wall column						
		1.4.3 Spray tower 🚬						
		1.4.4 Packed tower and its operating problems						
	1d. Distinguish different types of	f 1.5 Types of packing						
	packing with diagram	(a) Random (b) Regular						
	2a Describe applications	2.1 Distillation as a versatile separation method						
Unit – II	2b Describe the steps to Plot VLE,	2.2 Vapor Liquid Equilibria						
Distillation	Constant pressure, Constant	2.2.1Constant pressure equilibria						
	temperature equilibria	2.2.2 Constant temperature equilibria						
	2C Explain Kelauve volaulity and laws - Reput's Henry's	2.5 Kelalive volatility 2.4 Paoult's law Henry's law and their uses						
	2c 1 State their uses	2.4 Raburt Slaw, fremy Slaw, and then uses						
	2d Differenetiate azeotropes	2.5 Maximum and minimum boiling azeotropes						
	2e Explain	2.6 Flash vaporization						
	-Flash vaporisation, Differential	2.6.1 Material balance						
	distillation, Continuous	2.6.2 Calculation of amount and composition						
	rectification	2.7 Differential distillation						
	2f Calculate amount and composition	2.7.1 Derivation of Rayleigh's equation						
	for Flash vaporization	2.7.2 Calculation of product composition						
	2g Calculate product composition for Differential distillation	2.8 Continuous rectification of officiary solution						
	Differential distillation	2.8.2 Overall material and enthalpy balances						
	of Apply McCaba Thaila mathed for	2.0 McCabe and Thicle method for anriching and						
	21. Apply McCabe-Thele method for multistage trav tower for	2.9 McCabe and Thele method for enriching and stripping section						
	enriching and stripping section	2.9.1 Introduction of Feed and Location of the feed trav						
	2f.1 Calculate product rates, minimum	2.9.2 Total reflux ratio, Minimum reflux ratio, Optimum						
	reflux ratio and number of trays for	reflux ratio						
	the given data	2.9.3 Calculations of product rates, minimum reflux						
		ratio and number of trays						
	2g. Compare distillation techniques	2.10 Important distillation techniques						
	VIZ	(a) Steam distillation						
	(a) Steam distillation (b) Vacuum and molecular distillation	(b) V acuum and molecular distillation (c) A zootropic and extractive distillation						
	(b) vacuum and molecular distination (c) A zeotropic and extractive	(c)Azeonopic and extractive distination						
	distillation							
	2h. Distinguish Reboilers	2.11 Reboilers and their use						

		Humidification			
Unit _ III	3a Analyse the VIE for a pure	3 1 Vanor-pressure curve			
Humidificat	substance	3.2 Saturated and unsaturated vanor-gas mixtures			
ion	3h Explain the concepts of Absolute	3.3 Concept of Absolute humidity. Relative saturation			
ion	humidity Relative saturation	Percentage saturation Dew point Dry bulb			
	Percentage saturation Dew point	temperature. Wet bulb temperature. Adiabatic			
	Dry bulb temperature. Wet bulb	saturation temperature, Humid volume, Humid heat,			
	temperature. Adiabatic saturation	Enthalpy			
	temperature. Humid volume.				
	Humid heat, Enthalpy				
	3c.Evaluate the property of air using	3.4 Calculations of absolute humidity, relative			
	DBT and WBT	saturation, percentage saturation			
	3e.1 Calculate – absolute humidity,				
	relative saturation, percentage				
	saturation for the given process				
	data	0			
	3d. Draw psychometric chart	3.5 Psychometric charts for Air-Water system			
	3d.1 List Purposes of contact of gas	3.6 Purposes of contact of gas with pure Liquid			
	with pure Liquid				
	3e. Explain construction and working	3.7 Equipments			
	with diagram	3.7.1 Cooling towers			
		3.7.2 Spray chambers			
	4. Discuss drying equilibrium and	4.1 Drying equilibrium			
Unit _ IV	related concepts	4.1 1 Insoluble solids			
Drving	4a 1 Define and calculation of	4.1.2 Hysterisis 4.1.3 Soluble solids			
Drying	Moisture content Equilibrium and				
	free moisture. Bound and unbound	4.1.4 Definitions and calculation of Moisture content.			
	moisture	Equilibrium and free moisture, Bound and unbound			
	4a.2 Calculate - Moisture content,	moisture			
	Equilibrium and free moisture,				
	Bound and unbound moisture from				
	the given data				
	4b. Classify drying & drying	4.2 Batch and continuous drying			
	equipments	4.3 Classification of drying equipment			
	4				
	4c. Describe construction and working	4.4 Construction and working of following Drier			
	of Dher equipments				
		• Tray other			
		• Tunnel drier			
		• Vacuum drier			
()		Kotary unter			
		 Splay uner Elwidized hed driver 			
		Proumatic driar			
	Ad Describe drying rate characteristics	• Fleumatic uner			
	for batch drying with sketches	4.6 Derivation of equation for drying time for constant			
	4d 1 Derive equation for drying time	rate period and falling rate period			
	for constant rate period and falling	tute period and raining rate period			
	rate period				
	4e. Calculate drying time	4.7 Calculation of drying time			

	5a. Define and state uses of	Adsorption & Ion-Exchange:
Unit – V	Adsorption	5.1 Definition and industrial application of
Adsorption	L	Adsorption
& Ion-	5b. Classify Adsorption and	5.2 Types of adsorption
Exchange	adsorbents	5.3 Nature of adsorbents
U	5b.1State Commonly used adsorbents	5.4 Commonly used adsorbents
	5d. Analyse Adsorption Equilibria	5.5 Adsorption Equilibria
	5d.1 Describe Effect of temperature on	5.5.1 Single gases and vapours
	adsorption and Heat of adsorption	5.5.2 Adsorption hysteresis
		5.2.3 Effect of temperature on adsorption
		and Heat of adsorption
	5e. Apply Freudlich's equation for	5.6 Adsorption from liquids
	single stage and multi stage cross-	5.6.1 Adsorption from dilute solution
	current operation	5.6.2 The Freundlich's equation
	5e.1Describe adsorption from dilute	5.6.3 Adsorption from concentrated solutions
	and concentrated solution	5.6.4 Material balance and Freundlich's equation for
		single stage and multistage cross-current operation
	5f. Describe construction and working	5.7 Higgins contactor
	of Higgins contactor, Pressure swing	5.8 Pressure swing adsorber
	adsorber	
	5g. Appreciate concepts of Ion	5.9 Ion-Exchange
	Exchange	5.9.1 Principles
	5g.1 List Applicationv of Ion	5.9.2 Application
	Exchange	5.9.3 Equilibria
		5.9.4 Rate of ion exchange
	6a. State Industrial applications of	Crystallisation:
Unit –VI	crystallization	6.1 Industrial applications of crystallization
Crystallisati	6b. Explain equilibria mechanism for	6.2 Equilibria and yields
on	crystallisation	6.3 Super saturation and methods to get it
	6b.1 State the methods to get Super	6.4 Nucleation
	saturation	6.5 Crystal growth
	6c. Explain working principle and	6.6 Crystallization Equipment
	operation of Crystallization	6.6.1 Vacuum crystallizer
	Equipment with sketch	6.6.2 Swenson walker crystallizer
	6c.1Describe construction of	6.6.3 Draft tube-baffle crystallizer
	Crystallization Equipment	
	6d. State and explain Meir's theory	6./ Meir's theory
	6e. Calculate the crystal yield	6.8 Crystallization with and without seeding
		6.9 Calculations of crystal yield
	61. List steps to Prevent caking of	6.10 Caking of crystals and it's prevention
	crystals	

Unit	Unit Title		Distribution of Theory Marks					
		Teaching	R	U	Α	Total		
		Hours	Level	Level	Level	Marks		
Ι	Equipment for Gas	6	2	3	2	7		
	Liquid Operations							
Π	Distillation	15	5	7	7	19		
III	Humidification	8	2	4	4	10		
IV	Drying	10	4	4	5	13		
V	Adsorption & Ion-	10	4	4	4	12		
	Exchange							
VI	Crystallization	7	3	3	3	9		
Total		56	20	25	25	70		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

.

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit	Practical/Exercise	Apprx.
	No.	(Outcomes in psychomotor domain)	Hrs.
			Required
1	I	Demonstrate principle, construction and working of equipments for	4
		gas-liquid operations with models	
2		Prepare vapour liquid equilibria curve at atmospheric pressure for	4
	See 2	Benzene-Xylene	
3	II	Carry out simple distillation in glass assembly	4
4	II	Find out the effect of vacuum on distillation of liquid	4
5	II	Carry out continuous rectification in packed column	4
6	II	Find out amount of steam required in steam distillation	4
7	III	Find out the property of atmospheric air with the help of wet bulb	4
		and dry bulb temperature	
8	III	Set desired conditions of humid air in humidity control cabin	4
9	IV	Prepare drying curve of moist sand and moist limestone	4
10	IV	Find out equilibrium moisture content and drying time of wet solid	
11	V	Characterize industrial adsorbents and observe their samples	4

S. No.	Unit No.	Practical/Exercise (Outcomes in psychomotor domain)		
12	V	Remove colour impurities from water using charcoal	4	
13	VI	Find out the yield of crystals from saturated solution without seeding	4	
14	VI	Find out the yield of crystals of from saturated solution with seeding	4	
Total				

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Visit nearby industries and observe the working of mass transfer equipments.
- ii. Visit the website of reputed mass transfer equipment manufacturers and prepare a report on these equipments.
- iii. Prepare chart/ Model of mass transfer equipments.
- iv. Quiz, Debate

9. SPECIAL INSTRUCTIONAL STRATERGY (If Any)

i. Animated videos and drawings of equipments

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Mass Transfer Operations	Robert E. Treybal	Mc Graw- Hill, 3rd Edition, 1981
2	Unit Operation of Chemical	McCabe, Warren L.,	McGraw Hill Publication, New
	Engineering	Julian C. Smith	York 2004, 7th Edition
3	Unit Operations-II	K. A. Gavhane	Nirali Prakashan, Pune
4	Unit Operations of Chemical	P. Chattopadhyay	Khanna Publishers, New
	Engineering, Volume-I		Delhi, 1995
5	Chemical Engineering,	Coulsion and Richardson	Butterworth-Heinemann; 5 th
	Volume-2		Edition, 2002
7	Introduction to Chemical	L.Badger,	McGraw Hill Publication, New
	Engineering	Julius T. Banchero	York, 7 th Edition, 2004

B. List of Major Equipment/Materials

- i. Distillation Assembly : 2000 ml round bottom flask, 1000 ml collection flask, joints, adapter with ³/₄ neck, simple/coiled glass condenser, thermometer pocket
- Packed column : Heating mantle single phase 240 v AC, 15 amp, max 250 °C, 2litre Flask, Column- MS and Borosil glass, ID-58 mm, OD-62 mm, Packing-100 mm glass, 400 mm MS, 50 mm glass, 12 mm dia rasching ring, Condenser- shell MS, tube Copper, Rotameter-0.5-5 LPH
- iii. Steam distillation setup : Distillation kettle MOC-MS, dia-150 mm, height 300mm; jacket dia 175 mm height, height 300 mm, pressure gauge, steam relief valve, steam feed line with valve, drain valve, steam trap on jacket outlet, 25 mm glass wool insulation with MS cladding; Condenser MS shell, tube copper dia-150 mm,

height 250; Steam generator inner SS 304, outer MS dia 180 mm, height 270 mm; 25,5litre collecting beaker

- iv. VLE apparatus : Heating mantle with 1 litre flask, dimmerstat, digital temp indicator, air and water cooled condenser, mounted on wooden and MS frame, thermocouples
- v. Humidity cabin : Double walled thick gauge chamber SS 304, heater 500 W; Cooling circuit with compressor, expansion valve, condenser and refrigerant; Steam generator SS 304; Control panel with digital temperature indicator, low water level indicator, solenoid valve
- vi. Tray dryer : Temp range 50-100/200, thick MS chamber, digital temp indicator and controller, Air circulation by induction motor, Tray about 80×40×3 cm
- vii. Batch crystallizer : Jacket 325 mm round, 155 mm deep, 3mm thick, annulus 22.5 mm; 25 mm thick glass wool insulation, Aluminium cladding; motor-stirrer 10mm rod, speed regulator
- viii. Benzene, Toluene, Xylene, Sand, Limestone, silica gel, Charcoal, boric acid, Sodium sulphate, Potassium permanganate

C List of Software/Learning Websites

- i. www.unitoperation.com
- ii. http://nptel.ac.in/courses/index.php?subjectId=103103035
- iii. http://1rv07ch.files.wordpress.com/2010/05/lecture1-introduction2masstransfer.pdf
- iv. http://www.msubbu.in/ln/mt/
- vi. http://serve.me.nus.edu.sg/arun/file/teaching/ME6203_2013_Mujumdar.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. Harsh B. Shukla, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- Prof. Upasana T. Singh, Lecturer in Chemical Engineering, Shri K.J. Polytechnic, Bharuch
- Prof. Parul K Patel, Lecturer in Chemical Engineering, Govt. Polytechnic, Gandhinagar
- Prof. N. N. Hansalia, Lecturer in Chemical Engineering, Government Polytechnic,
- Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. Abhilash Thakur.** Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: PETROLEUM REFINING & PETROCHEMICAL TECHNOLOGY (COURSE CODE: 3350503)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	5 th semester

1. RATIONALE

The development of refining and petro-chemical industries in the country has made it compulsory for the chemical engineers to get acquainted with important aspects of petroleum refining and petrochemical technology. Every diploma chemical engineer has to invariably handle the vast consumption of petroleum products, their diversity and increasing applications. Diploma holders have to apply the relevant concepts for operating petroleum refinery or petrochemical plant in a smooth and safe manner. These may also helpful in marketing and quality check of petro products. Hence, this course has been designed to develop such competency and skills.

2. LIST OF COMPETENCY

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Operate petroleum refinery and petro-chemical plant

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Characterize crude petroleum and petroleum refinery
- ii. Fractionate crude petroleum into useful fractions
- iii.Measure important physical properties of petroleum products
- iv. Apply refinery processes to maximize desired petro products
- v. Use treatment techniques to purify petro products
- vi. Manufacture widely used petrochemicals

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme		Total Credits		Exa	mination S	cheme		
(In Hours)		(L+T+P)	Theory Marks		Practical	Marks	Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150
4	0	2	6	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics	
	(in cognitive domain)		
	1a. Describe the reserves of Crude	1.1 Occurrence and history of Petroleum	
Unit – I	Petroleum oil in India	1.2 Crude Petroleum oil reserves in India	
Basics of	1a.1State basics occurrence of	1.3 Composition of Petroleum	
Petroleum and	Petroleum	1.4 Classification of Petroleum	
Refinery	1a.2 Classify Petroleum		
	1a.3Describe history of Petroleum		
	1b. Explain basics of refineries and–	1.5 Refineries development in Gujarat and India	
	products	1.6 Types of Refineries	
	1b.1State types of Kenneries	1.7 Refinery processes	
	Describe Refinery processes-	1.7.1 Physical changes	
	Firystear and Chemical changes	1.7.2 Chemical changes	
		1.8 Refinery products	
T	2a. Describe primary treatment of	Primary treatment of crude :	
Unit – II Exactionation	crude	2.1 Denydration and Desaiting of crude of	
f factionation	2h Describe distillation of and	2.2 Fipe still fleater	
of retroleum	and crude, residue	2.5 Atmospheric distillation of crude residue	
	2c Identify Physical properties of	2.5 Physical properties of petroleum products and	
	petroleum products fractions and	its measurements ·	
	measure- (Units of measure)	2.5.1 Petrol	
		2.5.2 Diesel	
		2.5.3 Kerosene	
		2.5.4 Lubricant oil	
		2.5.5 CNG and LPG	
	• • •	2.5.6 Grease	
	3a. Compare Cracking methods	3.1 Cracking	
Unit – III	3a.1 Describe the Purpose of	3.1.1 Purpose of cracking	
Refinery	cracking & Effect of temperature	3.1.2 Effect of temperature and pressure on	
Processes	and pressure on Cracking	Cracking	
		Cracking methods	
		3.1.3 Thermal cracking	
		3.1.4 catalytic cracking	
	2h Evalain need of Reforming	3.1.5Fluidised bed catalytic cracking	
	3b 1 Differentiate thermal and	3.2 Reforming	
	catalytic reforming	3.2.2 Differentiate thermal and catalytic	
	3b 2 Identify effect of important	reforming	
(~`	parameters on reforming	3.2.3 Platforming(Pt catalyst-Reforming)	
	3b.3 Explain Pt catalyst-Reforming	······	
	3c. Explain in brief refinery	3.3 Other important refinery processes	
	processes -Hydrotreating,	3.3.1 Hydrotreating	
	Hydrocracking, Delayed coking,	3.3.2 Hydrocracking	
	Visbreaking	3.3.3 Delayed coking	
		3.3.4 Visbreaking	
	4a. State the purposes of sulphur	4.1 Purposes and methods of sulphur removal	
Unit – IV	removal	4.2 Doctor's sweetening	
Treatment	4a.1 Explain methods of sulphur	4.3 Catalytic desulfurization	
Techniques	removal - Doctor's sweetening,	4.4 MEROX treatment	
	Catalytic desulfurization.		

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In cognitive domain)	
	MEROX treatment	
	4b. Explain Treatment of Kerosene	4.5 Treatment of Kerosene by liquid SO ₂ extraction
	by liquid SO ₂ extraction	
	4c. Distinguish solvent extraction	4.6 Solvent extraction processes
	processes – Furtural, Phenol,	4.6.1 Furtural extraction method
	Duo sol	4.6.2 Phenol extraction method
		4.6.3 Duo sol extraction process
	4d. Describe Purpose of dewaxing	4.7 Purpose of dewaxing
	4e. Compare dewaxing Techniques	Dewaxing Techniques
		4.8 Dewaxing without solvent
		4.9 Dewaxing with solvent
		4.9.1 Ketone dewaxing and propane dewaxing
Unit – V	5a. Describe in brief development of	5.1 Development of petrochemical industry in
Petrochemicals	petrochemical industry in	Gujarat and in India
	Gujarat and in India	
	5b. Draw flow chart for	5.2 Manufacturing of important C1 compounds
	manufacturing of	5.2.1 Methanol
	- C1 compounds- Methanol and	5.2.2 Formaldehyde
	Formaldehyde	5.3 Manufacturing of important C2 compounds
	-C2 compounds - Ethylene	5.3.1 Ethylene dichloride
	dichloride, Vinyl chloride and	5.3.2 Vinyl chloride
	Ethylene Oxide	5.3.3 Ethylene Oxide
	- C3 compounds-	5.4 Manufacturing of important C3 compounds
	Polypropylene.Propylene oxide	5.4.1 Polypropylene.
	-Chemicals from aromatics-	5.4.2 Propylene oxide
	Linear Alkyl Benzene	5.5 Chemicals from aromatics
	Phenol by benzene sulfonate	5.6 Manufacture of Linear Alkyl Benzene
	process	5.7 Manufacture of Phenol by benzene sulfonate
		process

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

4

Unit	Unit Title		Distribution of Theory Marks				
		Teaching	R	U	Α	Total	
		Hours	Level	Level	Level	Marks	
Ι	Basics of Petroleum and	6	4	2	2	8	
	Refinery						
II	Fractionation of Petroleum	8	4	4	2	10	
III	Refinery Processes	10	5	5	3	13	
IV	Treatment Techniques	14	6	6	5	17	
V	Petrochemicals	18	8	7	7	22	
Tot	tal	56	27	24	19	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

C No	TI*4	Drastical/Eventian	A	
5. NO.	Unit	Pracucal/Exercise	Apprx.	
	No.	(outcomes in psychomotor domain)	Hrs.	
			Required	
1	Ι	Prepare a detail chart of modern refinery	2	
2	Ι	Prepare a detail chart of petrochemical products	2	
3	II	Determine flash point by Penskey Martin method	2	
4	II	Determine fire point by Penskey Martin method	2	
5	II	Measure softening point and drop point of Grease	2	
6	II	Measure Aniline point of lubricating oil		
7	II	Determine penetration number of Grease		
8	II	Determine Carbon residue by Ram's bottom method	2	
9	II	Determine Carbon residue by conradson method		
10	II	Measure smoke point of kerosene	2	
11	II	Measure cloud point lubricating oil	2	
12	II	Measure pour point lubricating oil	2	
13	II	Measure initial & final boiling point of any petroleum	2	
		product		
14	I	Measure Viscosity of lube oil by Redwood /Saybolt/Engler	2	
		viscometer		
	$\langle \cdot \rangle$	Total	28	

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

i.Course/topic based presentation

ii.Market survey of various petrochemical products of different manufacturers and their comparison based on their specification, composition and cost

iii.MCQ/Quiz

9. SPECIAL INSTRCTIONAL STRATEGY (IF ANY)

- i. Lecture and demonstration of Animated videos of refinery and petrochemical plant
- ii. Arrange an industrial visit to nearby petrochemical indusrty
- iii. Mini project

10 SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication
1	Modern Petroleum Refining Processes	B. K.Bhaskar Rao	Oxford and IBH, 2007
2	Outlines of chemical Technology	M. Gopala Rao, Marshall Sittig	3 rd Edition East-West press pvt. Ltd, Delhi
3	Shreve's Chemical Process Industries	Austin G.T.	McGraw Hill publication – New Delhi, 5th edition
4	A Text on Petrochemicals	B.K.Bhaskar Rao	2 nd Edition, Khanna Publishers, Delhi, 1998
5	Petroleum Refinery Engineering	W.L.Nelson	McGraw Hill, Newyork, 1958

B. List of Major Equipment/Materials (With major specifications):

- i. Penskey Martin Apparatus: Electrical heating with gas test jet and electric heater with energy regulator. Assembly is resting in air bath which is covered with dome shape metal top. The cup is fitted with insulated handle and locking arrangement. The round shaped heater with different temperature regulation system suitable for operation on 220 Volts AC mains.
- ii. Cleaveland Flash and Fire Point Apparatus: The apparatus consists of a cup, heating plate, thermometer clip and test flame attachment with swivel joint for passing over liquids.
- iii. Softening point and drop point Apparatus: Ring and Ball Apparatus with electric motorised stirrer and electric heater, concealed hot plate with temperature regulator.
- iv. Drop Point Apparatus hand operated stirrer, consists of brass sleeve and case with metal cup and a glass boiling tube with cork fitted to a bath (Beaker) is provided .
- Penetrometer : A rack, pinion and pointer assembly, dial is graduated from 0-400 in on tenth millimeter sub division. Two samples containers made of Aluminium, round dial fitted on a Aluminium painted stand having adjustable penetration needle, holder sample container and transfer dish.
- vi. Ram's bottom Apparatus: It consists of a solid metal bath having 6 walls to accommodate cocking bulbs with heating elements around the bath, the temperature may be controlled by a Pyrometer depending upon the type supplied, 6 cocking bulbs are supplied with apparatus.
- vii. Conradson Apparatus: The Apparatus consists of Spun Sheet Iron Crucible 25cc capacity, sheet iron hood and sheet iron block on a stand with triangular wire bridge.

- viii. Cloud and pour point Apparatus: It consists of a main cooling bath made of stainless steel sheet and stand unit with drain plug and cover with provision for fitting thermometer and a filling aperture for adding freezing mixture. A glass jar for containing oils, jacket, disc and gasket.
- ix. Distillation Apparatus: The instrument consists of metal shield fitted with asbestos board to support distillation flask with height adjustable device. It has slide for vapour tube and lining having glass window for clear view of inside objects. The condenser bath is provided with Mild Steel black painted stand. Electrically operated on 220 volts AC mains.
- x. Red wood viscometer: Made of stainless steel bath big enough to accommodate 3 cups Redwood No.I and 2 cups of Redwood No.II. Oil cups fitted with Precision jets of Stainless Steel. Temperature is controlled by energy regulator.
- xi. Saybolt Viscometer: Stainless Steel bath with oil cup which is centrally placed in a water bath. The bath has a lid which contains a Water Cooling Tube, Two handle with Two Stirrer Blades, Thermometer socket, Straight heater, Stirring is done by turntable arrangement.
- xii. Engler Viscometer: It consists of Stainless steel water bath having oil cup with double walled lid. The water bath with stirring device mounted on stand. A thermometer clip to the water bath and the oil cup lid has a thermometer socket. The bath is fitted with 500 watts heater. It is supplied with wooden or ebonite valve to fit jet. It can operate on 220 Volts AC mains.
- xiii. Materials: Petrol, Diesel, Kerosene, Lube oil, Grease, Aniline

C List of Software/Learning Websites

- i. www.personal.psu.edu/jun3/blogs/assignments/Oil%20Refinery.pdf
- ii. http://nptel.ac.in/courses/103103029/pdf/mod2.pdf
- iii. www.processengr.com/ppt_presentations/oil_refinery_processes.pdf
- iv. http://www.exxonmobil.com/Europe-English/Files/Simple_Guide_to_oil_refining.pdf
- v. http://www.kau.edu.sa/Files/0001216/files/4354_Important%20Petrochemical%20Processes.p df
- vi. http://www.kau.edu.sa/Files/0053956/Subjects/Chapter%201%20petro.pdf
- vii. http://e-lib.dede.go.th/mm-data/Bib11162.pdf
- viii. http://chemicalsbestpractices.sap.com/Files/2_SAP_In_The_Chemical_Industry/
- ix. 2_2_Chemical_Subindustries/SAP_Petrochemicals_Overview.pdf
- x. http://nptel.ac.in/courses/103103029/pdf/mod3.pdf

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE Faculty Members from Polytechnics

- **Prof. D. H. Joshi,** I/C H. O. D. in Chemical Engineering, Government Polytechnic, Valsad
- **Prof. P. D. Chaudhary,** Lecturer in Chemical Engineering, Government Polytechnic, Valsad
- **Prof. N. N. Hansalia**, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot
- **Prof. Mrs K. J. Sareriya**, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Prof. Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

HousestionPapers.com

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: UTILITIES AND INSTRUMENTATION IN CHEMICAL PLANT (COURSE CODE: 3350504)

Diploma Programme in which this course is offered	Semester in which offered
Chemical Engineering	5 th Semester

1. RATIONALE

Diploma chemical engineer has to ensure smooth and proper operation of utilities and auxiliaries' plants such as steam, compressed air, instrumental air, inert gases, DM water and chilled water. These utilities are essential for manufacturing different chemical products. Use of measuring devices for the measurement of parameters like temperature, pressure, flow, level, viscosity, specific gravity, humidity are necessary for controlling chemical plant for producing materials of desired quality and to maintain plant safety. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. COMPETENCY

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Operate different utility plants and various types of instruments

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Use various methods for water softening and purification
- ii. Operate different types of steam generators
- iii. Operate compressors, blowers for handling air and inert gases
- iv. Use Refrigeration for Various applications
- v. Measure temperature, pressure, flow, level and viscosity
- vi. Operate various control valves and control systems

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme		Total Credits		Exa	mination S	cheme		
(In Hours)		(L+T+P)	Theory Marks Practical M		Marks	Total Marks		
L	Т	Р	С	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	200

 $\label{eq:Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit; ESE - End Semester Examination; PA - Progressive Assessment$

5. COURSE CONTENT DETAILS

T T * /	Major Learning Outcomes	Topics and Sub-topics
Unit	(in cognitive domain)	1 1
Unit – I	1a. Explain role of Utilities in	1.1 List and use of various utilities in chemical
	Chemical Plant	plant
Water as Basic	1a.1 List various utilities in	
Utility	chemical plant & uses	
v	1b. List sources of Water	1.2 Sources of water
	1c. Differentiate types of Water	Types of Water
		1.3 Hard & Soft water
		1.4 Boiler Feed water and demineralized water
	Id. Compare Softening processes	1.5 Methods of water softening processes
	of water	• Lime soda process (Hot & Cold)
		• Zeolite process
		• Ion exchange process
		Phosphate process
	le. Explain the process of	1.6 Purification of water
	reavy water with skatabas	• Screening
	raw water with sketches.	• Sedimentation
		• Coagulation
		• Filtration
TT ·/ TT	2. Englain and a fastilitier	• Sterilization
Unit – 11	2a. Explain uses of utilities -	Utilities : 2.1 Liss of Steam Air & Inart Cases, as utilities
	2h Define properties of steem	2.1 Use of steam, All & ment Gases as utilities
Steam Air &	20. Denne properties of steam	2.2 Flopentes of steam
Inert Gases		• Wat stoom
mert Gases		Wet steall
	•. •.	Saturated Steam
		 Superificated steam Specific volume of steam
	2c Label the different part of	2.3 Steam Generator : Classification
	steam generator	comparison components
	2d. Classify steam generator	2.4 Factors affecting selection of Boiler
	2e. Select steam generator	2.1 1 deters arecenng sereed on or Doner
	2f. compare steam generators	
	2g. List the Factors affecting	
	selection of Boiler	
	2f. Describe construction and	2.6 Construction and working of
	Working of Locomotive Fire	(a) Locomotive Fire tube boiler
	tube boiler ,Lancashire boiler	(b) Lancashire boiler
	2g. Discuss utility air	2.7 Utility air
		Compressed Air
		Blower Air
		• Fan Air
		Instrumental air
	2h. Describe the working	2.11 Types of Air compressors
	principle, application of Air	 Reciprocating Air compressors
	compressors –	Multistage compressors
	(a) Reciprocating Air	Rotary compressors
	compressors (b) Multistage compressors	
	(c) Rotary compressors	

I mit	Major Learning Outcomes	Topics and Sub-topics
Unit	(in cognitive domain)	
	2i. Describe properties of Inert	2.12 Inert gas - Nitrogen, Argon
	gases	
Unit – III	3a. Explain the working principle of refrigeration	3.1 Concept of refrigeration
Refrigeration	3b. Distinguish methods of	3.2 Methods of Refrigeration
0	Refrigeration	Ice Refrigeration
		• Evaporative Refrigeration
		Vapor Refrigeration System
	3c. Describe COP and TOR of	3.3 COP and TOR of refrigeration
	refrigeration	
	3d. Use primary and secondary	3.4 Types of Primary Refrigerants
	Refrigerants	Ammonia
		• Halo Carbons (Freon of Different type)
		• HFC (Hydro Fluorocarbon)
		3.5 Types of secondary Refrigerants
		• Water
		Brine
		3.6 Selection of Refrigerants
Unit – IV	4a. Classify instruments in	4.1 Importance of instrumentation in chemical
	chemical plant	plant
Basics of		4.2 Classification of instruments
Instrumentation	4b. Describe Basic elements of	4.3 Basic elements of instruments
	instruments	
	4c. Compare Static and	4.4 Static and Dynamic Characteristics of
	Dynamic Characteristics of	instruments
	instruments	
	4d. Differentiate First and	4.5 First order system and second order system
T T •4 T 7	second order system	
Unit- V	5a. Explain Temperature scale	5.1 Different Temperature scale
Moosuring	5b. Compare inermometers	5.2 Definition of thermometer
Dovidos	Solution & Working of :	5.5 Principle, Construction & working of : Moreury in glass thermometer. Bi metallic
Devices	Marcury in glass Bi metallic	thermometer, pressure spring thermometer
	pressure spring resistance	resistance thermometer
	thermometers	
	5c. Describe Principles of	5.4 Principles of thermoelectricity
	thermoelectricity and See-	5.5 See-back effect, Peltier effect and Thomson
	back effect, Peltier effect and	effect
	Thomson effect	
	5d. Describe principle,	5.6 Industrial thermocouple: their principle,
	construction, working range,	construction, working range, lead wires
	lead wires of thermocouple	5.7 Thermowells in details
	and Thermowells	
	5e. Explain principle,	5.8 Radiation and optical Pyrometers
	construction, and working of	
	Radiation and optical	
	Pyrometers	1 5
	51. Differentiate pressure gauges	1. Pressure gauges
		- diaphragm, Bourdon tube gauge, Dead
	5. Describe and 1.1	weight Gauge, Strain gauge
	og. Describe principle,	5.10 Larget meter, Vortex Shredding meter,

Unit	Major Learning Outcomes	Topics and Sub-topics		
UIIIt	(in cognitive domain)			
	construction, and working of	Turbine meter		
	Target meter, Vortex			
	Shredding meter, Turbine			
	meter			
	5h. Classify and explain level	5.11 Classify: Liquid level measuring devices		
	measuring devices	5.12 Direct level measuring devices		
		• Probe and tape		
		 Sight glass 		
		• Floats		
		5.13 Indirect level measuring devices.		
		• Air trap box method		
		• Diaphragm box method		
		Bellow system		
		• Differential pressure manometer		
	5i. Compare viscosity	5.14 Viscosity measurement by		
	measurement methods	Capillary tube method		
		• Rotating cylinder method		
		• Torsion viscometer		
	5j. Explain principle,	5.15 measurement of		
	construction, and working	 Specific gravity by hydrometer 		
		• Humidity by hygrometer		
		• pH by pH meter		
Unit – VI	6a. Explain Function of relays	6.1 Function of relays and interlocks		
	and interlocks			
Control	6b. Explain schematic control	6.2 Control loops		
Valves,	loops for	Temperature control		
Control Loops	-Temperature control	Pressure control		
& Control	-Pressure control	• Flow control		
System	- Flow control	Level control		
	- Level control			
	6c. Describe process control	6.6 Process control modes : P , P+I , P+I+D,		
	modes with sketches	ON -OFF		
	6d. Explain uses of PLC and	6.7 PLC and DCS system		
	DCS System			

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
	5	Teaching Hours	R Level	U Level	A Level	Total Marks
Ι	Water as Basic Utility	7	3	3	3	9
II	Steam, Air & Inert Gases	14	6	6	6	18
III	Refrigeration	7	3	3	3	9
IV	Basics of Instrumentation	4	2	2	1	5
V	Measuring Devices	18	7	8	7	22
VI	Control Valves, Control	6	2	2	3	7
	Loops & Control System					
	Total	56	23	24	23	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of **Programme** Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr.	Unit	Practical/Exercise	Apprx.		
No.	No.	(Major outcomes in psychomotor domain)	Hrs.		
			Required		
1	Ι	Operate water treatment in water treatment plant	4		
2	Ι	Treat water using lime soda process	4		
3	II	Generate steam in laboratory using baby boiler	4		
4	II	Operate and test the working of air compressor	4		
5	III	Demonstrate different refrigeration cycles	4		
6	V	Measure Temperature by thermometer and thermocouple	4		
7	V	Measure Temperature by Bi-metallic thermometer	4		
8	V	Measure Pressure by mechanical pressure gauge	4		
9	V	Measure gas flow rate	4		
10	V	Measure level using direct method	4		
11	V	Measure viscosity by capillary tube method	4		
12	V	Measure specific gravity by Hydrometer	4		
13	V	Measure humidity by Hair hygrometer	4		
14	V	Measure pH by pH meter	4		
15	VI	Prepare a chart of components of DCS system	4		
16	VI	Demonstrate working of control valves and actuators using chart	4		
	Total (perform any practical for total 56 hours so that most units are covered)				

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1	Industrial instrumentation,	Donald P. Eckman.	JohnWilley and Sons, New
			Y OFK, 2004
2	Industrial Instrumentation &	S. K. Singh	3rd edition
	Control		Tata-McGrawHil, 1987
3	Process Instrumentation and	A P Kulkarni	15 th Edition, April 2011,
	Control		Nirali Prakashan, Pune
4	Unit operation of chemical	McCabe, Warren L.,	McGraw Hill 👝
	Engineering.	Julian C. Smith	Publication, New York
			2004, 7 th Edition
5	Plant utilities	D. B. Dhone	2 nd Edition, 2012
			Nirali Prakashan, Pune
6	Process System Analysis &	Donald R. Coughnour.	2 nd edition, 1991, McGraw
	Control		Hill Publication, Newyork

B. List of Major Equipment/Materials

- i.Bi metallic thermometer Metal Brass/Invar, Range 40 ° F 800 ° F, 1 % span
- ii. Thermo Couple Thermocouple Wire: Pt/Rh or Fe/Constantan or Copper/Constantan,

Range – Suitable to Material used, Lead Wire- Copper/Constantan, with suitable

sheathing, with milivoltmeter, 1.5% accuracy

- iii.Burdon Pressure Gauge Arc Length 270°, Brass or Bronze or Copper or SS, Range 0-14 Kg/cm²
- iv.Gas Flow measurement Assembly
- v.Level Measurement Assembly
- vi.Capillary tube viscometer Oswald viscometer
- vii.Hair hygrometer
- viii.Hydrometer
- ix.Digital pH meter Range 1-14 pH

C List of Software/Learning Websites

- i. http://nptel.ac.in/courses/103103037/
- ii. http://www.silbert.org/MSA_WT_Manual.pdf
- iii. http://ppuchem.blogspot.in/2013/02/unit-1-notes.html
- iv. http://www.tecmaservice.it/pdf/wika_%20brochure_chimica.pdf
- v. http://www.npti.in/Download/Thermal/BoP/13%20Sulakshana%20Sule.pdf
- vi. http://www.isu.edu/estec/ic-ed-modules/Module-10-Flow-Measurement.pdf
- vii. http://www.betterbricks.com/sites/default/files/operations/om_of_boilers_final.pdf
- viii. http://solve.nitk.ac.in/dmdocuments/electrical/DCS_write_up.pdf
- ix. https://www.idc-online.com/technical_references/pdfs/instrumentation/
 - a. Industrial_Instrumentation%20-%20Flow.pdf

9. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

- i. Course/topic based presentation
- ii. Explore internet and visit websites of different chemical industries/supplier of plants and prepare reports on latest trends in utilities.
- iii. MCQ/Quiz

10. SPECIAL INSTRCTIONAL STRATEGY (If Any)

- i. Show animated and real videos/pictures of different plants
- ii. Demonstrate different measuring instruments/sensors in class.
- iii. Industrial visit of plant consisting water treatment plant and Boilers, Refrigeration and Control system
- iv. Arrange lectures of persons from industry.

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Ms. Yamini S. Patel, Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- Mr. M. R. Acharya, Lecturer in Chemical Engineering, Government Polytechnic, Gandhinagar
- **Prof. N. N. Hansalia**, Lecture in Chemical Engineering ,Government Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Abhilash Thakur. Associate Professor, Department of Applied Sciences
- Dr. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

COURSE TITLE: CHEMICAL ENGINEERING THERMODYNAMICS (COURSE CODE: 3350505)

Diploma Programme in which this course is offered	Semester in which offered		
Chemical Engineering	5 th Semester		

1. RATIONALE

Diploma Chemical engineer has to deal with the laws of thermodynamics which are applied to flow and non-flow processes in the plant to evaluate heat effects and energy transformation calculation accompanying physical and chemical changes, for calculating temperature change and to determine power generation efficiencies of engines and power plants. Understanding of basic concepts and application of thermodynamics are therefore necessary for chemical engineers. Hence the course has been design to develop these competencies and its associated cognitive, practical and effective domain learning out comes.

2. LIST OF COMPETENCY

The course should be taught and implemented with the aim to develop required skills in students so that they are able to acquire following competency:

• Solve the problems related to heat and work requirements for physical and chemical changes.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire required learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Distinguish systems, functions, properties and processes
- ii. Explain various laws of Thermodynamics
- iii. Implement the first law of thermodynamics for non-flow & flow process.
- iv. Access the PVT behaviour of the fluids.
- v. Calculate the effects of heat changes during chemical reaction.
- vi. Apply the concepts of second law of thermodynamics.

4. TEACHING AND EXAMINATION SCHEME

Tapahing Sahama Tatal Cradita			Ex	amination	Scheme			
Tea (In Hou	rs)	(L+T+P)	Theory Marks		y Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	100
3	2	0	5	70	30	00	00	100

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Describe scope of thermodynamics	1.1 Scope and limitations of
Introduction	1.1 Define System, functions,	thermodynamics
and Basic	properties Process and	1.2 System, functions, properties
Concept	surrounding	Process and surrounding
	1b. Explain the System, functions,	1.2.1 System-Homogeneous and
	properties, Process and	heterogeneous, Closed and
	surrounding with examples of	open, State of System
	chemical engineering field	1.2.2 Properties -Extensive and
	1c. Differentiate systems, functions,	intensive
	properties and processes	1.2.3 Function -State and Path function
	Id. Describe Extensive and intensive	1.2.4 Process - Reversible and
	properties	irreversible process
	le. Explain importance of Force,	1.3 Force, Pressure, Work and Energy
	Pressure, Work and Energy	1.4 Steady state, Equilibrium state and
	physical quantities, phase rule and	Phase rule
	zeroth law of thermodynamics	1.5 Temperature and zeroth law of
	If. Solve simple problems on -Force,	thermodynamics
	Pressure, Work and Energy	1.6 Ideal gas temperature scale
	physical quantities, phase rule and	1./ Simple examples (numerical)on
	laws of thermodynamics	Force, Pressure, Work and Energy
		physical quantities, phase rule and
T T •4 T T		laws of thermodynamics
Unit – 11	2a. Explain first law and energy -	2.1 First law of thermodynamics
First Law of	Internal Energy, Enthalpy and	2.2 Internal Energy, Enthalpy and
1 nermodyna	Heat capacity concepts with	Heat capacity
mics	examples of chemical engineering	2.5 First law for non-flow processes
	20. Apply first law for non-flow &	and now processes of chemical
	now process of chemical	engineering
	2. Solve simple mehleme on first	2.4 Simple numerical on first law and
	2c. Solve simple problems on first	List sensity
	Enthelpy and Heat appacity	Heat capacity
	2. Eucloin DVT heheviewn of nume	2.1 DVT helessing of suggestived
	3a. Explain PVI benaviour of pure	3.1 PVI benavior of pure fluids
PVI Babayian	2h Distinguish Ideal and Processor	3.2 Ideal gas and equation of state
Benavior	30. Distinguish ideal gas Processes	3.3 I Constant Volume process
	sc. Compare equations of state for	3.3.2 Constant Process
	2d Solve simple problems on Ideal	3.3.2 Constant Temperature process
	su. Solve simple problems on ideal	3.3.4 Adjubatic Process
	for real gases	3 3 5 Polytropic Process
	101 Ical gases,	3.4 Equation of state for real gases
		3.4 Equation of state for real gases
		3.4.2 Virial Equation
		3 4 3 Compressibility charts
		3.5 Simple examples (numerical)
		5.5 Simple examples(numerical)

5. COURSE CONTENT DETAILS

∐nit	Major Learning Outcomes	Topics and Sub-topics		
Unit	(in cognitive domain)	Topics and Sub-topics		
Unit – IV	4a. Explain the heat effects of	4.1 Heat effects accompanying		
Heat Effects	chemical reactions	chemical reactions:		
	4b. Apply Hess's law of constant	4.1.1 The standard heat of reaction		
	heat summation	4.1.2 The standard heat of		
	4c. Calculate heat of reaction and	combustion		
	temperature of reaction	4.1.3 The standard heat of formation		
	4d. Solve simple problems on heat	4.2 Hess's Law of constant heat		
	Effects in chemical reactions	summation		
		4.3 Effects of temperature on heat of		
		reaction		
		4.4 Temperature of reaction		
		4.5 Simple numerical		
Unit – V	5a. Discuss limitation of first law	5.1 Limitations of first law		
Second Law	5b. Compare different statements of	5.2 Statements of Second law		
of	Second law	5.3 Heat reservoir, Heat engine and		
Thermodyna	5c. Describe the concepts of Heat	Heat pump		
mics	reservoir, Heat engine and Heat	5.4 Concept of Entropy		
	pump	5. <mark>5 Carn</mark> ot cycle and thermodynamic		
	5d. Explain entropy	temperature scale		
	5e.Explain carnot cycle and	5.6 Calculation of Entropy change		
	thermodynamic temperature scale	during		
	5f. Calculate entropy changes	5.6.1 Phase change		
	5g. Explain the concept of entropy	5.6.2 Ideal gas processes		
	and irreversibility	5.6.3 Adiabatic mixing		
	5h. Solve simple problems on Second	5.6.4 Isothermal mixing		
	law	5.6.5 Chemical reaction		
		5.7 Clausius Inequality		
	6	5.8 Mathematical statement of Second		
	0.1	law		
		5.9 Entropy and Irreversibility		
		5.10 Simple numerical		

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (Theory)

Unit	Unit Title		Distribution of Theory Marks				
		Teaching	R	U	Α	Total	
		Hours	Level	Level	Level	Mark	
Ι	Introduction and Basic Concept	07	3	4	5	12	
II	First Law of Thermodynamics	06	3	3	4	10	
III	PVT behavior	09	5	5	5	15	
IV	Heat Effects	07	4	4	4	12	
V	Second Law of	13	7	7	7	21	
	Thermodynamics						
Tot	tal	42	22	23	25	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (*outcomes in psychomotor and affective domain*) so that students are able to acquire the competencies/course outcomes. Following is the list of practical exercises for guidance.

Note: outcomes in psychomotor domain are listed here as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

-----NIL------

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities. These could be individual and group based.

- i. Course/topic based presentation
- ii. MCQ/Quiz

9. SPECIAL INSTRCTIONAL STRATEGY (IF ANY)

Give as many simple numerical problems to students as possible in class itself and help them to solve if they get stuck.

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

Sr. No.	Title of Books	Author	Publication
1	Chemical Engineering Thermodynamics	K. V. Narayanan	PHI publishers
2	Introduction to Chemical Engineering Thermodynamics	J. M. Smith H.C. Vanness M. M. Abott	Tata McGraw Hill
3	Thermodynamics	C.P.Arora	Tata McGraw Hill
4	Chemical Engineering Thermodynamics	Y. V. C. Rao	Universities Press
5	Chemical Process Principles Vol.2	A.Hougen K.M.Watson R.A.Ragatz	Asia Publications
6	Textbook of Engineering Thermodynamics	R. K. Rajput	Laxmi Publication
7	Chemical Engineering Thermodynamics	R. B . Varia	Atul Prakashan
8	Applied Thermodynamics	P. B. Joshi	Nirali Prakashan

B. List of Major Equipment/Materials

-----Nil -----Theoretical Approach)

C. List of Software/Learning Websites

- www.unitoperation.com i.
- ii. www.nptel.com

COURSE CURRICULUM DEVELOPMENT COMMITTEE 11.

Faculty Members from Polytechnics

- Prof. Manish R. Nasit, Lecturer in Chemical Engineering, N. G. Patel Polytechnic, Isroli -• Ahwa.
- **Prof. Mukesh B. Dhangar,** Lecturer in Chemical Engineering, N. G. Patel Polytechnic, • Isroli-Ahwa.
- **Prof. R. P. Hadiya**, Lecturer in Chemical Engineering, Government Polytechnic, Rajkot. •

Coordinator and Faculty Members from NITTTR Bhopal

- Jep Jsor, De, • **Prof. Abhilash Thakur.** Associate Professor, Department of Applied Sciences
- Prof. Bashirullah Shaikh, Assistant Professor, Department of Applied Sciences