GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

COURSE TITLE: STRUCTURAL MECHANICS-II (Code: 3340601)

Diploma Programme in which this course is offered	Semester in which offered
Civil Engineering	4 th Semester

1. RATIONALE

Knowledge and understanding of Structural Mechanics is very important for engineers in order to make Civil Engineering Structures safe and serviceable. The Structural Mechanics –II subject is taught in 4th sem. to develop the concept of analysis of determinate structures under various types of transverse &/or direct loading. Analysis of industrial trusses is also incorporated to give an idea of typical structure to the students. In this course, analysis of indeterminate structures under transverse loading, along with analysis of members under direct loading is to be studied. Analysis of structural members under the effect of principal stresses & strains is also incorporated to give an exposure of compound stresses to the students. At diploma level students are expected to study about these aspects of analysis and design of various structures so as to develop their understanding in order to apply their knowledge in construction industry.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop different types of skills leading to the achievement of following competency:

• Analyze various types of beams & Evaluate the Structures.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Analyze various types of statically indeterminate beams.
- ii. Compute slope and deflection in statically determinate beams.
- iii. Evaluate the structures under direct and eccentric axial loading.

4. TEACHING AND EXAMINATION SCHEME

	me	ination Sche	Exam		Total Credits	Teaching Scheme		Tea
Total	Marks	Practical 1	Theory Marks		(L+T+P)	rs)	(In Hou	
Marks								
	PA	ESE	PA	ESE	С	Р	Т	L
150	30	20	30	70	05	02	00	03

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
I∃nit – I	1a. Distinguish between	1.1 Different types of Determinate &
	determinate and	Indeterminate Structures & Structural
Fixed	indeterminate structures	Components/Elements
Beam	1b. Draw Shear Force &	1.2 Advantages of fixed beam over simply supported beam
	Bending Moment Diagram	1.3 Concept of analysis by Area Moment
	for Fixed Beams	method
		1.4 μ and μ' diagram 1.5 Numerical for SE & BM diagrams for
		1.6 fixed beam with central point load &/or
		1.7 UDL over Full Span
Unit – II	2a. Compute deflection & slope	2.1 Slope & Deflection
	induced in Statically	2.2 Formulae of Slope & Deflection for
Slope &	Determinate Beams	Cantilever Beam subjected to Point Load at
Deflection	different types of beams	UDL along full Span
	under different loads and	2.3 Formulae of Slope & Deflection for S.S
	support conditions.	Beam subjected to Central Point Load and
		2.4 Numerical problems on Slope and Deflection for
		2.2 & 2.3
Init – III		3.1 Statically Indeterminate Beam
	3a. Calculate Shear Force &	Like Propped Cantilever, Continuous
Continuous	Bending Moment	Beam with or without Over Hang
Beam	Diagram for Continuous Beam using Theorem of	Define Free Moment & Fixed End moment
	Three Moment	3.2 Theorem of Three Moment
		(Clapeyron's Theorem)
	3b. Draw Shear Force &	3.3 Formulae to find B.M of a continuous beam
	Diagram for Continuous	3.4 Point of Contra-flexure & its importance
	Beam using Theorem of	3.5 Numerical to draw S.F & B.M Diagram for
	Three Moment	two or three span continuous beams
	3c. Draw Shear Force &	having end supports as overhang, fixed and (or hinge and subjected to Central
	Bending Moment	Point Load and/ or U.D.L over full span
()	Diagram for Continuous	using Theorem of Three Moment
	Beam using Moment	3.6 Stiffness, flexibility, carry over
	Distribution Method	3.7 Moment Distribution Method
		3.8 Numerical to draw S.F & B.M Diagram of
		two or three span continuous beams having
		hinge and subjected to Central Point Load
		and/ or U.D.L over full span using Moment
		Distribution Method

Structural Mechanics II		
Unit	Major Learning Outcomes	Topics and Sub-topics
	(Course Outcomes in	
	Cognitive Domain according	
	to NBA terminology)	
	40 Calculate Direct & Panding	4.1 Eccentricity
UIIII - IV	4a. Calculate Difect & Bending	4.1. Eccentricity 4.2. Formula for combined Direct &
Combined Direct		4.2. Formula for combined Direct &
& Bending	components	A 2 Limit of Eccontricity
Stresses	4b. Check stability of Pataining	4.5. Limit of Eccentricity 4.4 . Core of section for Rectangular &
	well & Dam	4.4. Core of section for Rectangular &
	wall & Dalli	4.5 Formulae for combined stresses on sections
	Ac Draw stress distribution	subjected to eccentric loads, considering
	diagram in retaining wall	Uniaxial & Biaxial eccentricity
	and dams under different	4.6 Stress distribution diagrams
	types of loads	4.7 Application of concept of combined
	types of founds	stresses to find pressure at base & stability
		check of Retaining Wall & Rectangular &
		Trapezoidal Dam
		4.8. Numerical for $4.6 \& 4.7$
Unit – V	5a.Calculate Principal Stresses	5.1 Formulae for Normal, Tangential &
	& Principal Plane on a plane	Resultant Stresses due to Direct Orthogonal
Principle	in a Strained structural	Stresses & Shear Stress
Strossos &	Material	5.2 Numerical based on 5.1
Dringinlo		5.3 Formulae for Principal Stresses and for
Domos		Location of Principal Planes
Planes		5.4 Numerical based on 5.3
		5.5 Mohr's Circle and its application for 5.1 &
		5.3
		5.6 Numerical based on 5.1, 5.3 Graphically

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

44

Unit	Unit Title 🌔		Distribution of Theory Marks			arks
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Fixed Beam	06	01	02	04	07
II	Slope & Deflection	04	01	02	04	07
III	Continuous Beam	12	04	03	14	21
IV	IV Combined Direct &		03	04	07	14
	Bending Stresses					
V	Principle Stresses &	12	02	05	14	21
	Principle Planes					
	Total	42	11	16	43	70

Legends: R = Remember, U = Understand, A= Apply and above Level (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (outcomes in psychomotor domain)	Approx. Hrs. Required
1	Ι	Solve at least five real life problems pertaining to Unit – I	02
2	Π	Perform Deflection test on a Simply Supported beam with different sectional properties (material, c/s dimensions etc)	02
3	Π	Perform Deflection test on a cantilever beam with different sectional properties (material, c/s dimensions etc)	02
4	Π	Perform Deflection test on a fixed beam with different sectional properties (material, c/s dimensions etc)	02
5	П	Solve at least three real life problems pertaining to Unit – II	02
6	II I	Solve at least Six real life problems pertaining to Unit-III	06
7	IV	Solve at Least four real life numerical Problems of Unit-IV	04
8	V	Solve at least Eight real life problems pertaining to Unit – V	08
		Total Hours	28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Conduct a mini project in which a group of students will practically verify the effect of cross section , end conditions on the deflection of beams .
- ii. Site Visit to understand Retaining Wall structure , Dam and indeterminate structures

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Demonstration of Models & Charts of Indeterminate Structures , Dams & retaining wall & field Visits
- ii. Show video films/animations to explain failure of various structures under different load conditions.

10. SUGESSTED LEARNING RESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication
No.			
1.	Strength of Material & Mechanics	Dr. B C Punamia	Standard Publication
	of Structures		
2.	Strength of Material	S RAMAMURTHAN	Dhanpat Rai Publication
3.	Strength of Material	Timo Shanko	Tata Mcgraw Hill
4.	Theory of Structures	R S KHURMI	S Chand
_			
5.	Theory of Structures – vol I & II	S B Junarkar	Charotar Publication
		H J Shah 🧧 🏹	P

B. List of Major Equipment/Materials

1. Cantilever Beam, Fixed & Simply Supported Beam Model to measure deflection

C. List of Software/Learning Websites

- i. www.csiberkeley.com
- ii. www.gtstrudl.gate
- iii. www.ramint.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. B G Rajgor, H.O.D, App. Mech., BBIT, V V Nagar
- **Prof. K. Venkateshwarlu**, H.O.D, TFG, Adipur
- Prof. B. G. Bhankhar, H.O.D, App. Mech. G.P.Ahmedabad
- Prof. J. H. Gabra, I/C H.O.D , App. Mech. , G.P , GODHRA
- Prof. C. H. Bhatt, DR. S.&S.S. Ghandhy College, Surat
- Prof. K. K. Patel, H.O.D, G. P. Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof. M. C. Paliwal**, Associate Professor, Civil & Environmental Engineering Department.
- Dr. V.H. Radhakrishnan, Professor, Civil & Environmental Engineering Department.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ADVANCED SURVEYING (Code: 3340602)

Diploma Programme in which this course is offered	Semester in which offered
Civil Engineering, Transportation Engineering	4th Semester

1. RATIONALE

Field survey is the basic requirement for preparing any engineering maps or drawings. Field survey can be professionally carried out only when various steps involved in the survey work are known with skills of operating modern survey equipments. At diploma level, students are expected to study about these aspects so as to develop their understanding, performance oriented abilities in order to apply their knowledge in construction industry.

2. **COMPETENCIES**

The course content should be taught and the curriculum should be implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- Prepare survey maps/drawing after carrying out different kinds of field surveys using advance surveying equipments.
- Find out various physical quantities like length, area, volume, elevations, angles, latitude, departure, etc by interpreting survey drawings.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- Use Theodolite for the measurement of horizontal and vertical angle
- Calculate the height of objects through a trigonometrical levelling.
- Explain the principles and various methodologies involved in techeometry
- Retrieving the data and generate the drawings using advanced surveying equipment & application software.

4. TEACHING AND EXAMINATION SCHEME

Teac	ching S	cheme	Total Credits		Exa	mination S	cheme	
(In Hou	rs)	(L+T+P)	Theory	Marks	Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	6	9	70	30	60	90	250

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

	Major Learning	
Unit	Outcomes	Topics and Sub-topics
	(in cognitive domain)	1 1
Unit – I	1a. Explain the basic	1.1 Introduction to theodolite
	function of different	1.2 Uses of theodolite
Theodolite	parts theodolite.	1.2 Uses of meddonite
	-	1.5 Sketch and parts of Transit Vermer theodolite
	1b. Operate theodolite and	1.4 Proding of main and vornior scale on
	read horizontal and	horizontal and vertical plate
	vertical angle.	1.5 Temporary adjustment of a theodolite
		1.6 Permanent adjustment of theodolite
	1c. Determine the altitude	(Fundamental axis of theodolite and
	and departure of given	their relationship)
	points on the ground.	1.7 Definitions and various technical terms
		1.8 Methods of measuring horizontal
		angles and vertical angles
		1.9 Use theodolite for measuring a
		magnetic bearing, prolong a line,
		ranging a line
		1.10 Measuring direct and deflection
		angles
		1.11 Errors in theodolite work
		1.12 Theodolite Traversing
		1.13 Traverse computations
	• • •	1.14 Closing errors, Balancing the
		traverse
		1.15 Gale's Traverse Table
II:t II	2a Determine relative	2.1 Introduction
$U \Pi I - \Pi$	2a. Determine relative	2.1 Introduction
Trigonometrical	measurements for	2.2 Methods of observations (Direct and
I rigolioliteti ical Levelling	given different	Reciprocal)
Levening	conditions of	(cerprocar)
	instruments	2.3 Methods of determining the elevation
		of a particular point
	2b. Calculate the height of	2.4 when base of the object is accessible
	objects through a	2.5 when base of the object is inaccessible
	trigonometrical	
	levelling.	2.6 Related examples using all methods
I⊺nit _ III	3a Explain the principles	3.1 Introduction
	and various	3.2 Purpose and Principles of tacheometric
Tacheometrv	methodologies	surveying
5	involved in	3.3 Instruments used in Tacheometry
	techeometry.	3.4 Theory of Stadia Tacheometry
		3.5 Anallatic Lens, advantages &
	3b. Calculate R.L. and	disadvantages.
	horizontal distance	3.6 Methods of determining constants of a

	Major Learning	
Unit	Outcomes	Topics and Sub-topics
Cint	(in cognitive domain)	Topics and Sub-topics
	between object and	Tacheometer
	instruments	3.7 Related examples on tacheometer
	moti amento.	constants
		3.8 Methods of Tacheometry
		(Stadia & Tangential)
		3.9 Method of Fixed Hair :
		- When line of sight is horizontal and
		staff held vertically
		- When line of sight is inclined and staff
		held vertically (Angle of Elevation &
		Depression)
		3.10 Advantages and disadvantages of
		Tangential method
		3.11 Related examples of Tacheometer
		using all methods.
Unit – IV	4a. Describe different	4.1 Introduction
	elements of curves.	4.2 Types of circular curves
Curves		4.3 Definitions and notations
	4b. Calculate necessary	4.4 Designation of curve
	data required to setting	4.5 Relation between Radius and degree of
	out curve on field.	curve
		4.6 Elements of simple circular curve
		4.7 Setting out simple circular curve
		4.8 Methods of setting out simple circular
	•. •	curves
		4.9 Transition curves
		- Requirements and purpose of it.
		4.10 Vertical curves
T T 1 / T T		4.11 Related examples of curves.
Unit – V	5a. Explain the principles	5.1 Introduction
A dream and Greener	of total station.	5.2 Basics of Digital Theodolite
Advanced Survey	5h Bagord data on total	5.5 Introduction and Principles of E.D.M.
Equipments	station as well as on	Derts of Total station
	computer	- Advantages disadvantages and uses of
	computer.	Total Station
	5c Retrieving the data	- Types of Total Station
	and generate the	- Advancement in Total Station
	drawings using	Technology
	application software.	- Automatic Target Recognition ATR
	"PP-remon solo are	5.5 Surveying using Total Station
		- Flow chart of data collection
		- Fundamental Parameters of Total
		Station
		5.6 Precautions to be taken while using
		Total Station
		5.7 Field equipments
		5.8 Set up of Total Station

Unit	Major Learning Outcomes	Topics and Sub-topics
		- Centering, Levelling, back-sight,
		Azimuth Marks
		5.9 Measurement with Total Station
		5.10 Total Station Initial Setting
		5.11 Field Book recording
		5.12 Radial Shooting
		5.13 Total Station Traversing
		5.14 Survey Station description
		5.15 Occupied Point Entries
		5.16 Data Retrieval
		5.17 Field Generated Graphics
		5.18 Construction layout using Total Station
		5.19 Overview of Computerized Survey
		Data System
		5.20 Equipment Maintenance
		5.21 Maintaining Battery Power
		5.22 Total Station Job Planning and
		Estimating
		5.23 Total Survey system errors Sources
		and how to avoid them
		5.24 Controlling errors

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	•. O '	Distribution of Theory Marks						
		Teaching	R U		Α	Total			
		Hours	Level	Level	Level	Marks			
1	Theodolite	12	05	05	11	21			
2	Trigonometrical	06	02	02	05	09			
	Levelling								
3	Tacheometry	08	04	06	06	16			
4	Curves	08	03	04	07	14			
5	Advanced Survey	08	03	03	04	10			
	Equipments								
Tot	tal	42	17	20	33	70			

Legends: **R** = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical/Exercise/Project	Approx.	Approx.
No.	No.	(Outcomes in Psychomotor Domain)	Hrs.	Hrs.
		1	for	for
			Practical	Project
		Theodolite:		
		(1) Identify various parts of the theodolite	04	
		(2) Measure the hori. angle by Repetition,		
		Reiteration	08	
		(3) Measure the vertical angle	02	
1	Ι	(4) Measure the deflection angle	02	
		(5) Calculate the data for Gale's table		
		Theodolite Traversing:	02	
		- To Carry out the project for a closed		06
		traverse 4 to 5 stations and prepare the		00
		drawing sheet using Gale's Table		
		Tacheometry:		
		(1) Determine the tacheometric constant	02	
		(2) Determine the distance and R.L. of a	04	
		point when line of sight is horizontal.		
		(3) Determine the distance and R.L. of a	04	
	\mathbf{A}	point when line of sight is inclined for an		
		angle of elevation		
2	III	(4) Determine distance and R.L. of a point	04	
		when line of sight is inclined for an		
		angle of depression		
		Tacheometry Survey:		
		- To Carry out the project for a 3 to 4		12
		stations for closed traverse on		12
		undulating/hills regions and prepare the		
		drawing sheet		
		Curve :		
		(1) Determine the elements of simple	02	
3	IV	circular curve		
		(2) Determine the data for setting out curve	02	
		from offset of long Chord		

S. No.	Unit No.	Practical/Exercise/Project (Outcomes in Psychomotor Domain)	Approx. Hrs. for Practical	Approx. Hrs. for Project
		(3) Determine the data for setting out curve	02	
		By Rankine (one theodolite) method		
		- To carry out the project by Rankine's methods		04
		Total Station:		
		(1) Identify the parts of the Total Station	02	
		(2) Set out the total station on a station		
		(3) Set out station by setting up a back sight	02	
		(4) Set out station by setting up a Azimuth Mark	02	
4	IV	(5) Measure the horizontal Angle	02	
-		(6) Measure the vertical angle	6	
		(7) Measure the deflection angle	02	
		Total Station survey:	04	
		- To carry out the project for small	04	
		traverse on a ground and prepare the		06
		drawing sneet	56	28
L		Total	50	20

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: Course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based mini-projects etc. These could be individual or group-based.

S. No.	Unit	Student Activities
	No.	
		Comparison between different angular measurement
i.	I	equipments
ii.	IV	Visit the area having horizontal and vertical curves
2	N.	Collecting, transferring and processing field data and preparing drawings through computer software.
111.	V	

9. SPECIAL INSTRUCTIONAL STRETEGIES (If any)

- i. Lecture cum demonstration of equipments of advanced surveying
- ii. Field demonstration
- iii. Software based preparing of maps.

10. SUGGESTED LEARNING RESOURCES

1. List of Books:

S. No.	Title of Books	Author	Publication	
1	Surveying and levelling Vol-I & II	T. P. Kanetkar & S. V. Kulkarni	Pune Vidyarthi Griha Prakashan	
2	Surveying and Levelling Vol-I & II	Dr. B. C. Punmia	Laxmi Publications Pvt. Ltd.	
3	Surveying and Levelling Vol-I & II	S.K.Hussain, M.S. Nagaraj	S. Chand and Co.	
4	Surveying and Levelling Vol-I & II	S. K. Duggal	Tata Mc Graw Hill	
5	Surveying and Levelling	N. N. Basak	Tata Mc Graw Hill	
6	Fundamentals of Surveying	S. K. Roy	PHI Learning Pvt. Ltd	
7	CD Programme on EDM and Total Station	Learning Materials Development Project	Taramani, Chennai NITTTR, Bhopal	

(B) List of Major Equipment/Materials:

- i. Transit Theodolite,
 - a. Digital Theodolite,
- ii. Levelling Staff,
- iii. Techeometer,
- iv. Total Station and its accessories,
 - a. other misc. equipments, etc.

(C) List of Software/Learning Websites

- i. www.Autodesk.com
- ii. www.drawingnow.com
- iii. www.learn-to-draw.com
- iv. www.sitetopo.com
- v. www.surfer.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. B. V. Modi**, Principal BVPIT(DS) Umarakh Ta-Bardoli
- Prof. P. D. Gohil, Sr. L.C.E. Sir B. P. T. I., Bhavanagar
- Prof. H. K. Rana, L.C.E. Government Polytechnic, Valsad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr Subrat Roy, Professor Department of Civil and Environmental Engineering
- Dr J.P Tegar, Professor and Head Department of Civil and Environmental Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: BASIC TRANSPORTATION ENGINEERING (Code: 3340603)

Diploma Programme in which this course is offered	Semester in which offered
Civil Engineering	4 th Semester

1. RATIONALE

As we know that the economy of any country is widely dependent either direct or indirect way on the transportation of various commodities which in turn dependent upon the "How efficiently the transportation system of the country is functioning."

Therefore, knowledge and understanding of various design, construction and maintanance aspects of roads, railways and bridges are very important for engineers working at site in order to make transportation system safe and efficient. At diploma level, students are expected to study about these aspects of raods, railways and bridges so as to develop their understanding in order to apply their knowledge in improving civil infrastructure for transportation.

2. COMPETENCY:

The course content should be taught and curriculum should be implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Supervise construction and maintenance of roads, railways and bridges.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Explain the importance of transportation system and its geometrical aspects
- ii. Comprehend the concept of construction and maintenance of roads, railways and bridges.
- iii. Perform the tests on the various materials used in the construction work of roads, railways and bridges.

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme Total Credits				Exa	mination S	cheme		
(In Hou	rs)	(L+T+P)	Theory Marks Practical Marks		Total Marks		
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
Unit – I Introduction and Road Geometric	 1a. Discuss various Modes of transportation 1b. Explain the various components of a road section. 1c. Demonstrate the basic requirement of road alignment. 1d. Dsecribe various terms used in road geometry. 	 . 1.1 Importance & Classification of roads 1.2 Modes of transportation. 1.3 Requirements of good roads 1.4 and its advantage. 1.5 Road alignment and their types 1.6 Importance of road alignment. 1.7 Factors affecting the alignment. 1.8 Cross section of road showing its component as per IRC. 1.9 Function of each component. Terms used in road geometry Camber, sight distance, Super elevation, Widening of Road. 1.10 Transition curve and Road Gradient.
Unit – II Road materials and its construction aspects	 2a. Describe various types of road construction methods. 2b. Explain various types of failures and maintenanceof road. 2c. Explain various types of tests on road materials. 	 2.1 Types of Pavement. 2.2 Necessity of Soil Stabilization and its methods. 2.3 Types of materials used in road Construction 2.4 Various tests on Aggregate and bitumen. 2.5 Construction of Flexible and Rigid Pavement. 2.6 Types of Failures in roads 2.7 Maintenance of roads and its components
Unit – III Drainage system.	3a. Explain importance of drainage and its maintenance	 3.1 Importance of drainage. 3.2 Purpose of drainage. 3.3 Methods of Surface and Sub-surface drainage. 3.4 Maintenance of drainage system.

T T 1 / T T 7			
Unit – IV	4a. Describe the basic parts of		
Introduction to	railway track and its	4.1.	Typical cross section of
Permanent way.	functions.		various permanent way as
	4b Explain the Joints and		per IRS.
	Gauge.	4.2.	Function of Various
	4c. Explain basic knowledge of		Components.
	points and Crossing.	4.3.	Method of fixing the rails with slipper.
		4.4.	Function of Rail joints.
		45	Railway gauge Types of
			Rail gauge and uniformity of
			gauge.
		4.6.	Function of point and
			crossing.
		4.7.	Factors affecting point and
			crossing.
		4.8.	Components of Turn outs and
			typ <mark>es of</mark> crossing.
Unit – V	5a. Discuss the function of	5.1	Classification of Yards.
Yards and	various yards.	5.2	Function of Various Yards.
Maintenance		5.3	Requirement of Track
of railway track	5b. Explain requirement of		Maintenance.
	track Maintenance 🧷 🔨	5.4	Daily and periodical
	0.0.1		Maintenance.
		5.5	Maintenance of Alignment,
			Drainage, Track Material and
			its components, Point and
	••••		crossing and level crossing.

Unit – VI	6a Discuss the function of	61	Importance and term used in
Introduction	various parts of bridge	0.1.	Bridge
Introduction,	Ch. Explain terms related to	60	Component of Dridge and its
Investigation and	ob. Explain terms related to	0.2.	Component of Bridge and its
Maintenance of	bridge.		function
BridgeS.	6c. Explain reqauirment of an ideal bridge	6.3.	Requirement of an ideal bridge
	6d. Carry out the maintenance	6.4.	Classification and types of bridge
	lepon	65	Bridge Site Characteristics
		6.6	Eactor affecting the selection
		0.0.	of Bridge Site.
		6.7.	Explain following terms:
			Scour, Afflux, Runoff.
			Economic Span. Clearance.
			Freeboard.
		6.8.	Classification of Cause Way
			and its limitations.
		6.9.	Routine and in depth
			inspection.
		6.10	Requirements of Inspection
			Report.
		6.11	. Maintenance of Steel Bridge,
			Masonry Bridge, Cause Way,
			Piers, Pilebents, Abutment,
	A.O		Wing Wall, Road Surface,
			Drainage, Parapet Wall and
			Bearing.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Introduction and Road Geometric	8	2	3	5	10
II	Road materials and its construction aspects	9	4	4	7	15
III	Drainage system	4	2	3	5	10
IV	Introduction to Permanent way.	8	2	3	5	10
V	Yards and Maintenance of railway track	5	2	3	5	10
VI	Introduction, Investigation and	8	2	5	8	15
	Maintenance of Bridge.					
Tot	tal	42	14	21	35	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

GTU/NITTTR/Bhopal/13-14

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured. Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit	Practical/Exercise/Project	Hrs.
No.	No.	(outcomes in psychomotor domain)	
1	Ι	Draw the dimensional sketches of cross section of road (with function of each part of road), road junction, road curve and widening	6
2	п	Carry out the following tests. - On Aggregate 1. Impact test. 2. Crushing test. 3. C B R test. - On Bitumen 1. Flash &Fire test. 2.Softening point 3. Penetration test	10
3	IV	Draw the dimensional sketches of cross section of permanent way & points & crossing (with function of each part of road).	6
4	V	Prepare a brief report after visit to Railway track & yards.	3
5	VI	Draw the sketches of various bridges after visiting the bridges in nearby locations.	3
		Total	28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: Course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based mini-projects etc. These could be individual or group-based.

S. No.	Unit No.	Student Activities	
1	Ι	Comparison of different types of Roads	
2	IV	Comparison and uniformity of various Guages	
3	VI	Comparison of different types of Bridges	

GTU/NITTTR/Bhopal/13-14

9. SPECIAL INSTRUCTIONAL STRETEGIES (If any)

- i. Lecture cum demonstration of various types of equipments used in construction of Road, Bridges and Railways (show video clips)
- ii. Field demonstration about the maintenance of Roads , Railways and Bridges
- iii. Show video films/ clips about different features of road, rail and bridge constructions.

10. SUGGESTED LEARNING RESOURCES

List of Books:

S. No.	Title of Books	Author	Publication
1	Highway Engineering	S K Khanna & Justo	Khanna publication, Delhi
2	Highway Engineering	S P Bindra	
3	Highway Engineering	L R Kadiyali	,O
4	Highway Engineering	S C Rangwala	0
5	Transport engineering	Vazirani & Chandola	5
6	Road Railway Bridges & Tunnel Engineering	T D Ahuja & Birdie	
7	Road Railway Bridges & Tunnel Engineering	B L Gupta & A K Gupta	

(B) List of Major Equipment/Materials

----No equipments or Materials required-----

(C) List of Software/Learning Websites

- i. <u>www.waterbouw.tudelft.nl/</u>
- ii. <u>www.learnrstv.com</u>
- iii. <u>www.shiksha.com</u>, IIT, Roorkee
- iv. <u>www.blackwellpublishing.com</u>
- v. <u>www.hrpwa.org</u>
- vi. <u>www.creativeworld9.com</u>
- vii. nptel.iitm.ac.in
- viii. www. Indian rail. com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. N. J. Patel Lecturer in Civil Engineering, Shri K J Polytechnic Bharuch
- Prof .D. P. Rao Lecturer in Civil Engineering, Dr. S & S S Gandhi Engg. College Surat

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. Subrat Roy, Professor, Department of Civil and Environmental Engineering
- Prof M. C. Paliwal, Associate Professor, Department of Civil and Environmental Engineering Housestion Papers. con

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: WATER RESOURCES MANAGEMENT (Course Code: 3340604)

Diploma Programme in which this course is offered	Semester in which offered	
Civil engineering	4 th Semester	

1. RATIONALE:

Knowing extremity of water crisis, we must appreciate water as "Nature's greatest gift". Our water requirement is rapidly increasing due to vast industrial development, population growth and changing life style. We are mostly dependent on rains as a predominant source of water. The other important source of water is the ground water which also depends to great extent on rainfall in previous years. We know that ground water table is declining rapidly due to its excessive use and misuse and also due to insufficient rainfall every year. To stress upon the concept of water management and simultaneously to create the awareness about the proper use and conservation of water, this course is specially designed for the students of Diploma in Civil Engineering. An attempt has been made to develop theoretical knowledge with emphasis on certain aspects of water resources management. The topics viz. hydrology, runoff, watershed management, recharging etc. have been specifically dealt in the curriculum.

2. COMPETENCY:

The course content should be taught and the curriculum should be implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Design the appropriate rain water harvesting scheme and required structures for managing water resources under given conditions

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- Discuss basic concepts of "Water Resources Management".
- Estimate the surface runoff from given precipitation data.
- Describe various types of survey investigations for reservoir planning
- Design the appropriate rain water harvesting scheme and required structures for given conditions.

4. SCHEME OF STUDIES AND EXAMINATIONS:

Teaching Scheme		Total Credits		Examination Scheme			1	
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150
3	0	2	5	70	30	20	30	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

5. COURSE DETAILS

Unit	Major Learning outcomes	Topics and Sub Topics
	(in cognitive domain)	G
Unit- I	1a. Discuss the concepts	1.1 Scope of W.R.M.
Introduction	and importance	1.2 Necessity of W.R.M.
	of Water Resources	1.3 Role of various agencies in W.R.M.:
	Management (WRM).	Agriculturists - Meteorologists
		- Geologists - Industrialists
	1b. Identify various agencies	- Scientists - Biologists
	associated with Water	- Water quality Control
	Resource Management.	(Authority)
		- Mechanical Engg Electrical
		engg Economists - Social
		workers- NGO's - Politicians
		- General Public
Unit-II	2a. Explain Hydrological	2.1 Define Hydrology
Hydrology	cycle.	2.2 Hydrological cycle
	2b. Describe various forms	2.3 Forms of precipitation
	and types of	2.4 Precipitation occupancy & its types.
	precipitation.	2.5 Measurement of rain fall
	2c. Explain various types of	2.5.1 Rain gauges
	rain gauges.	Non Recording
	2d. Compute average	Recording
	precipitation by various	- Float type
	methods.	- Tipping bucket
()	2e. Compute runoff using	 weighing bucket
	empirical formula.	2.5.2 Methods of determining average
	2f. Describe evaporation	rainfall
	process and factors	b. Arithmetic average method

GTU/NITTTR/Bhopal/13-14

	affecting it.	c. Theissen polygon method
		d. Isohytel method
		2.5.3 Determine optimum no. of rain
		gauges for given catchment area
		2.6 Dunoff
		2.6.1 Factors affecting runoff
		2.6.2 Runoff calculation using
		empirical formula only
		2.7 Evaporation, Transpiration & Evapo -
		transpiration
		2.7.1 Factors affecting evaporation.
Unit-III	3a. Identify various sources	3.1 Sources of water
Ground Water	of water.	3.2 Importance of ground water and
	3h Describe various terms	present scenario
	related to "ground water"	3.3 Terms related to groundwater
	2. Explain various types of	5.5 Terms related to ground water
	Sc. Explain various types of	
	wells with their features.	Aquifer, Aquicide, Aquifuge,
	3d. Discuss necessity of	Aquitard, porosity, Specific yield,
	recharging ground water.	Specific retention, storage
	3e. Describe various methods	coefficient, coefficient of permeability,
	of recharging ground	coefficient of transmissibility, Yield,
	water.	specific vield
		34 Types of well
		- Open Tube and flowing well
		achieve and interview and importance
		- concept, location and importance
		3.5 Necessity of recharging
		3.5.1 Artificial recharging as today's
		need.
		3.5.2 Types of artificial recharge
		- Spreading method.
		- Pit method / khet-talavadi
		- Induced recharge method
	0,	- Recharge well method
		- Sub-surface dam
		Check dam series
		- Check dam series
		- Polids
		- Unimed canais
Unit IV	40 Describe verieve	1.1 Survey and investigations
	4a. Describe various	4.1. Survey and investigations.
	surveys / investigations	a. Investigations for hydrologic data
Storage Works	to be carried out in	D. Geological data.
	storage works including	c. Topographic investigations.
	their classification.	d. Collection of legal data, water right.

GTU/NITTTR/Bhopal/13-14

	 4b. Compute reservoir capacity and losses. 4c. Discuss purpose of various storage zones of reservoir. 4d. Draw cross-sections of gravity and earthen dam at various points. 	 e. Investigation of reservoir site, land acquisition Environmental considerations Economical data - Benefit cost atio. 4.2. Site selection for reservoir Methods of estimating reservoir capacity 4.4. Storage zones Reservoir losses Reservoir sedimentation and its control Classification of storage works . 4.8. Factors for selecting type of dam Concept of low and high dam Component parts of gravity and earthen dam
Unit-V	5a. Explain purpose of	5.1 Purpose of distribution works
Distribution Works	distribution works	5.2 Component parts & sketches.
	5b. Differentiate between	5.3 Barrage.
	barrage and weir by	5.4 Weir
	means of a diagram	5.4.1 Comparison of weir and barrage.
	5c. Describe silt control	5.4.2 Causes of failure of weir and
	structures	remedial measures
	5d. Classify canals based on	5.5 Safe exit gradient
	their functions.	5.6 Control of silt entry Scouring sluices.
	5e. Explain factors affecting	silt excluder, silt ejector, head egulator.
	canal alignment	5.7 Classifications of canal
	5f. Discuss suitable	-Ridge and contour
	construction techniques.	Functions of each according to
	materials & equipments	network.
	for "canal lining."	Line diagram of network of canal.
	5g. Explain the causes,	5.8 Canal Alignment Factors influencing
	effects & prevention of	canal alignment .
	water logging.	5.9 Regime & semi-regime conditions.
		5.10 Canal lining.
		a. Advantages.
		b. Types of canal lining materials
	P ²	c. Methods of canal lining.
		5.11 Regulation works.
		5.12 C.D. WorksTypes, functions &
		sketches
		5.13 Outlets types, situation, functions &
		sketches
		5.14 Water-logging, effects, causes &

GTU/NITTTR/Bhopal/13-14

		prevention	
Unit –VI	6a. Describe important	6.1. Concept of 'watershed'	
Watershed	characteristics of "water	6.2. Characteristic of watershed, size,	
Development	shed".	shape, physiography, slope, climate,	
	6b. Evolve strategies of	drainage, land use, vegetation,	
	enhancing people's	geology, hydrology, hydrogeology,	
	participation in watershed	socio-economics.	
	management.	6.3. Watershed management & people's	
		participation	
		6.4. Role of co-operative society in	
		watershed management.	
Unit-VII	7a. Describe necessity and	7.1 Necessity of Rain water harvesting	
Water	importance of rain water	7.2 Importance of Rain water harvesting	
Harvesting	harvesting.	7.3 Rain water harvesting methods	
Structures	7b. Discuss various 'rain	- Check dams.	
	water harvesting'	- Nala / Gully plugging	
	methods, structures and	- Percolation tank.	
	their suitability in various	- Khet-talawadi	
	conditions.	- Roof harvesting	
		- Vegetation and plantation	
		03	

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I.	Introduction	3	2	3	2	7
II.	Hydrology	8	4	3	7	14
III.	Ground Water	7	3	5	6	14
IV.	Storage Works	8	3	4	7	14
V.	Distribution Works	6	2	2	3	7
VI.	Water Shed Development	6	3	2	2	7
VII.	Water Harvesting	4	3	2	2	7
	Structures					
		42	20	21	29	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise	Approx
		(Outcomes' in Psychomotor Domain)	Hrs.
			Required
1		Draw the following Sketches :	
	II	Hydrological Cycle	16
	II	Types of Precipitation	
	II	Rain gauges	
	III	Various methods of artificial recharge	
	IV	Component parts of earthen and Gravity dam	
	V	Diversion head works	
	V	Cross Drainage Works	
	VII	Various types of rainwater harvesting structures	
2		Solve Numerical from given data:	12
	II	Calculate average precipitation for given catchment	
		area using various methods.	
	II	Calculate Runoff for given catchment area using	
		empirical formula.	
	II	Compute optimum number of rain gauges for given	
		catchment area.	
	III	Compute yield of a well	
	VII	Design a check dam	
3		Field Visit and Report :	08
ÿ	Ι	Arrange field Visit to irrigation / W.R.I department	
		for collecting existing W.R. data of your district with	
		respect to Importance and necessity of WRM	

GTU/NITTTR/Bhopal/13-14

S. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx Hrs. Required
	II	Visit to meteorological department, collect	
		precipitation data, observe, and interpret.	
		Collect data of your district regarding various types of	
		water sources available and prepare a report	
		Suggest various methods of Artificial recharge of	
		ground water in your district	
		Collect data of various storage works in your district	
		Visit to water harvesting Structure nearby your	
		polytechnic and prepare a report	
4.		Seminar	04
	I to VII	Select one topic as a Seminar and present it using	
		modern teaching aids before teachers & students.	
Total H	ours		40

8. SUGGESTED STUDENT'S ACTIVITIES

i. Prepare prototype/ model of rainwater harvesting structure in the polytechnic/ suggested premises.

9. SPECIAL INSTRUCTIONAL STRETAGIES (If Any)

- i. Show the video/animation films of various types of dams and their structures.
- ii. Arrange visit to nearby water bodies

10. SUGGESTED LEARNING RESOURCES

(A) List of Books:

_							
S. No.	Title of Books	Author	Publication				
1.	Irrigation, Water Resources & Water Power Engg.	Dr. P.N. Modi	Standard Book House, Delhi.				
2.	Hydrology & Water Resources	R.K. Sharma	Dhanpat Rai & Sons, Delhi.				
3.	Ground water assessment, Development & management	K.R. Karanth	Tata Mc Graw Hill Pub. Co. Ltd., New Delhi.				
4.	Ground water	H.M.Ragunath	New Age international Ltd., New Delhi.				
5.	Hydrology & Water Resources Engg.	S.K.Garg	Khanna Pub., Delhi.				

GTU/NITTTR/Bhopal/13-14

(O)

6.	Watershed management in India	J.V.S. Moorthy	Willey Eastern Ltd.
7.	Design of small dams.	U.S.B.R.	
8.	Irrigation theory & practice	A.M.Mitchel	Vikas Pub. House Pvt. Ltd, Delhi.
9.	Water vision 2050 Narmada	W.R. & water supply deptt., Gandhinagar	
10.	Water Resources Engg- Principles & Practice	C. Satyanarayan Murthy	New Age International Ltd., New Delhi
11.	Relevant IS codes		

(B) List of Major Equipment/Materials:

- i. Rain gauge
- ii. Working models of storage works
- iii. Models of cross drainage works
- iv. Models of rain water harvesting structures.

(C) List of Software/Learning Websites

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. S. M. Mistry**, H.O.D.Civil Engg., **Dr**. S. & S. S. Ghandhy College of Engg and Tech., Surat
- Prof. P. N. Patel, Sr.Lecturer, Civil Engg., Deptt., G. P. Dahod
- Prof. A. K. Popat, Sr.Lecturer, Civil Engg., Deptt., G. P. Dahod
- Prof. D. V. Jariwala, Lecturer, Civil Engg., Deptt., G.P.Valsad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. V. H. Radhakrishnan, Professor, Department of Civil and Environmental Engineering
- **Prof M. C. Paliwal,** Associate Professor, Department of Civil and Environmental Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: SOIL MECHANICS (Code: 3340605)

Diploma Programme in which this course is offered	Semester in which offered
Civil Engineering, Transportation Engineering	4 th Semester

1. RATIONALE

Knowledge and understanding of soil and its engineering properties are very important for engineers working at site in order to make Civil Engineering Structures safe and serviceable. In INDIA, from region to region soil varies in properties and characteristics. Under different loading conditions soil is subjected to various stresses and problems like water logging, liquefaction of soil, seepage through soil and settlement. At diploma level students are expected to study about these aspects of soil so as to develop their understanding in order to apply their knowledge in construction industry

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Conducting different laboratory tests for determining engineering properties / parameters of a soil, evaluate engineering properties / characteristics of soil for their suitability to construction of engineering structures

3. COURSE OUTCOMES:

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- Explain various engineering properties / characteristics of soil with respect to construction and engineering applications
- Conduct different laboratory tests for determining engineering properties /parameters of a soil.
- Evaluate engineering properties / characteristics of soil for their suitability to construction of engineering structures.
- Explain essential features and requirements of site investigation with respect to soil.

	heme	Examination Scheme			Total Credits	Teaching Scheme		
Total Marks	Marks	Practical	Marks	Theory]	(L+T+P)	rs)	(In Hou	
	PA	ESE	PA	ESE	С	Р	Т	L
150	30	20	30	70	05	02	00	03

4. TEACHING AND EXAMINATION SCHEME

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Unit	Major Learning Outcomes	Topics and Sub-topics	
	(in cognitive domain)		
Unit – I	1a. Discuss soil formation	1.1 History	
Introduction	characteristics of soil. 1b. List structures where soil is used as	1.2 List structures where soil is used as construction material	
	Construction material. 1c. Describe soil-formation	1.3 Soil-formation in Geological cycle	
	in Geological cycle 1d. State the types of failures due to soil	1.4 State the types of failures due to soil in Civil Engineering structure	
	in Civil Engineering structure	1.5 General characteristics of different types of soils	
		1.6 Overview of different types of soils in Gujarat / India.	
Unit – II	2a. Explain phase diagram of	2.1 Three phase diagram	
Index Properties & Interrelationship	Soil 2b. Discuss various index properties of soil for the purpose of their classification & Use	 2.1.1 State three constituents of soil 2.1.2 Sketch showing three phases of soil 2.1.3 Assumptions in drawing a 	
	2c. Describe interrelationship between different index properties	 ii. phase diagram 2.2 Properties of soil like Density, Field density, Dry density, Saturated density, Void ratio, Porosity, Specific Gravit, Degree of saturation, Moisture conten, Density Index 2.3 Derive the following relations for a soil sample from fundamentals 	
		2.3.1 $e=n/n-1$, $n=e/1+e$	
		2.3.2 w×G = $e \times s_r$	
		2.3.3 $\Upsilon_{d=} \Upsilon b / 1 + W$	
		2.3.4 $\Upsilon_{b} = (G + e.s_{r})\Upsilon_{w}/(1+e)$	
		2.3.5 $\Upsilon_{sat=}(G+e)\Upsilon_w/(1+e)$	
		2.3.6 $\Upsilon_{d=}$ G $\Upsilon_{w}/1+e$	
		2.4 Numerical on 2.3	

5. COURSE DETAILS

Soil	Mechanics	

Unit – III	3a. Discuss methods of	3.1 Classification of soil (Grain size) as
	Classification	per Indian Standard
Soil	of LS	3.1.1 Basis /criteria of classification
Classification	Classification of	i. of soils
	Soil	ii. Three main categories of
	3c. Classify Soil based	soils
	on Consistency	111. Scale for classifying soil
	Limits	iv. on the basis of grain size
		3.2 Mechanical Analysis of soil
		3.2.1 Difference between course
		grained and fine grained Soil on
		the basis of range of grain size and
		2.2.2. Signed designation as per
		i IS code
		1. 1.5. Code 3.2.3 Coarse & Fine Sieve analysis
		b sedimentation analysis
		3 3 Grading Curves and different
		coefficients i.e. CU and CC
		a. Clay, silt, sand and gravel as
		per particle size
		b. Consistency Limits like Liquid
		limit, Plastic limit, Shrinkage
		3.4 Limit and Plasticity Index`
Unit – IV	4a. Comprehend the	4.1. Compaction and its Application
Compaction	principle and methods of	4.1.1 Effects of compaction on
	compaction of soil	different soil properties like
	4b. Differentiate between	permeability shear strength soil
	compaction and	settlements_stability of
	consolidation with	ambankmanta
	examples	A M i l l i l l M C
	4c. Determine MDD &	4.2. Maximum dry density and O.M.C.
	OMC of soil by	4.2.1 Typical compaction curve
	test	4.2.20ptimum moisture content
	lest	(OMC), Maximum dry density
		(MDD)
		4.3. Proctor test
		4.3.1 Light compaction
		4.3.2 Heavy compaction test
		4.3.3 Light compaction test on a given
		soil sample
		4.4. Factors affecting compaction like water
		content, nature of soil (fine or course
		grained), Grading of soil, compaction
		4.5 Compaction and Consolidation
		4.5. Compaction and Consolidation 4.6 Data of OMC in the field
		4.0. Kole of U.W.C in the field
		4./. Methods of Field Compaction &
		various Equipment for compaction

Unit – V Permeability & Seepage	 5.a Explain concept of permeability & its implications with respect to use of soil. 5.b Determine 'permeability' of given soil. 5.c Comprehend the concept of Seepage Analysis in relation to 'quick sand condition' with examples. 	 5.1 5.1 Permeable and Impermeable soils 5.1.1 Permeability and Impermeability 5.1.2 Flow of water through pipe and Through soil 5.2 Factors affecting the permeability 5.2.1 The factors affecting permeability 5.2.2 Factors used to control the permeability of soil to desired extent in various Civil engineering structures 5.3 Methods to find Coefficient of Permeability 5.3.1 Constant Head Method 5.3.2 Falling Head Method 5.4 Coefficient of permeability 5.4.1 Numerical based on K=(Q×L)/(t×h×A) K= (2.3× a× L)/(A× t)log₁₀ h1/h2₀2 5 Seepage pressure. 5.2 Quick sand condition. 5 Flow net its characteristics and
		application.
Unit-VI Shear Strength	 6a. Explain different terms used in the context of 'shear strength' of soil. 6b. Evaluate shear parameters of various types of soil, with their practical significance 	 6.1. Definition 6.1.1 Define: (a) Cohesion (b) internal friction (c) Shear strength 6.1.2 Coulomb's law for shear strength S = C+ σ_n tanφ 6.2. Shear strength of soil 6.2.1 Different shear tests used to determine shear strength of soil in laboratory 6.2.2 Procedure of direct shear test (Box shear test) 6.3. Types of soil C-soil, φ-soil, C-φ soil. 6.3.1 Draw failure envelope by drawing Mohr's circle from the data obtained during direct shear test 6.3.2 Calculate the values C and φ from the failure envelope of direct shear test on soil

VII	7a Explain concept of	7.1 Bearing canacity of soil
VII Bearing Capacity of soil	 7a. Explain concept of bearing capacity of soil. 7b. Describe various methods to determine bearing capacity of soil. 7c. Explain the concept & occurrence mechanism& effect of 'Liquefaction' of soil 	 7.1 Bearing capacity of soil 7.1.1 Net Bearing capacity 7.1.2 Safe Bearing Capacity 7.1.3 Ultimate Bearing Capacity 7.1.4 Bearing Capacity of various soil 7.2 Methods – Plate Load Test, Penetration Test & using C – Φ parameters for determining bearing
	OI SOII.	 parameters for determining bearing capacity of soil and to improve bearing capacity of soil 7.2.1 Foundation on soils of various bearing Capacity 7.3 Liquefaction 7.4 Definition 7.5 Occurrence & effect Effects of Liquefaction Remedial for Liquefaction
VIII Soil Investigation & Exploration	8a. Discuss various methods & appropriate use for investigation & exploration of soil.	 8.1 Purposes of exploration of soil. 8.2 Planning of exploration program 8.3 Soil samples and collection. 8.4 Field penetration Test:SPT 8.5 Introduction to geophysical methods

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	N N	Distribution of Theory Marks			arks
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Introduction	02	02	00	00	02
II	Index Properties &	07	02	04	08	14
	Interrelationships					
III	Classification of Soil	07	04	02	08	14
IV	Compaction of Soil	06	03	03	04	10
V	Permeability & Seepage	06	03	03	04	10
VI	Shear Strength	05	02	02	03	07
VII	Bearing Capacity of soil	05	02	02	03	07
VIII	Soil Investigation &	04	02	01	03	06
	Exploration					
Total		42	20	17	33	70

Legends: R = Remember, U = Understand, A= Apply and above Level (Bloom's revised taxonomy) Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	Practical/Exercise (Outcomes' in Psychomotor Domain)	Approx Hrs Requir ed.
1	Ι	Determine field moisture content of soil	02
2	Ι	Determine bulk density and dry density of soil by core cutter method	02
3	Ι	Determine specific gravity of sand by pycnometer	02
4	Ι	Determine bulk density and dry density of soil by sand replacement method	04
5	Ι	Conduct Sieve analysis of given soil for its classification	04
6	Ι	Determine consistency Limits i.e. Liquid limit, Plastic limit, Shrinkage limit	04
7	V	Determine permeability of soil by constant head method	02
8	V	Determine permeability of soil by falling head method	
9	V	Determine shear parameters of soil by box shear test	02
10	Ι	Determine OMC and MDD by Proctor Test	04
Total I	Hours		28

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Collect few samples & find out different characteristics/properties of Soil from nearby site
- ii. Undertake site visit related to road compaction& consolidation and prepare report
- iii. Undertake site visit related to SPT on field & prepare report
- iv. Visit to Soil Testing Laboratory for awareness related to other Soil Testing Equipment, Soil Testing Report.

9. SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- i. Show Video Clips of Soil Testing and interact with students by asking questions
- ii. Show Picture Clips through Power Point regarding Testing of soil and its. commercial report
- iii. Video programs on soil engineering tests by NITTTR Bhopal
- iv. Video/animation films on soil behavior during earthquake

10. SUGGESTED LEARNINRESOURCES

(A) List of Books:

S.	Title of Books	Author	Publication			
No.						
1.	Soil Mechanics &	Dr. B C Punamia	Standard Book House			
	Foundation					
2.	Modern Geo Technical Engineering	Dr. Alam singh	Jodhpur University			
3.	Textbook of Soil Mechanics & Foundation Engineering	V N S Murthy	UBS Publisher			
4.	Soil Sampling & Testing Manual	Dr A K Duggal	NITTTR , Chandigardh			
5.	IS 2720 , IS 1892 , IS 2132 &		BIS , New Delhi			
	IS 2809					
B.	List of Major Equipment/M	laterials	6.			
	i. Core Cutter					
	ii. Hot Air Oven					
	iii. Sand Pouring Cylind	ler				
	iv. Pyconometer Bottle					
	y Permeghility Apparatus					

В. **List of Major Equipment/Materials**

- i. Core Cutter
- ii. Hot Air Oven
- iii. Sand Pouring Cylinder
- iv. Pyconometer Bottle
- v. Permeability Apparatus
- vi. Set of IS Sieves
- vii. Casgrande Apparatus
- viii. Direct Shear Apparatus
- ix. Electronic Weighing Balance
- Heavy & Light Proctor Test Apparatus x.

С List of Software/Learning Websites

- i. www.issnge.org
- ii. www.springer.com
- iii. www.britannica.com
- iv. www.trb.org

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. B. G. Rajgor, H.O.D, App. Mech., BBIT, V. V. Nagar
- Prof. K. Venkateshwarlu, H.O.D, TFG Polytechnic, Adipur •
- Prof. C. H. Bhatt, Lecturer Dr. S. & S.S. Ghandhy College, Surat
- Prof. K. K. Patel, H.O.D, G. P Rajkot •

SCoordinator and Faculty Members from NITTTR Bhopal

• Dr. V H Radhakrishnan, Professor, Department of Civil and Environmental Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: COMPUTER AIDED DRAWING (Code: 3340606)

Diploma Program in which this course is offered	Semester in which offered
Civil Engineering, Transportation Engineering	4 th Semester.

1. RATIONALE

Computer Aided Design (CAD) is a good example of technological innovation that has had a significant impact on the drawing preparation and in civil engineering industry and other fields. Drawing is the tool by which civil engineer can express engineering detailing like layout of site, plan, elevation, section with interior details and design output to be used by marketing office, client, concern authority for execution, approval and for other works.

Formerly, such drawing were prepared manually, which resulted in time consuming process, repetition of work for editing again resulted in wastage of stationary and time of human resources.

Due to advancement in computer and development of versatile software like AutoCAD, civil engineers and architects are using computers and graphical software to generate necessary drawings with high precision and using less time compared to manual drafting and it has therefore became a necessity to have CAD skills among the engineers to improve the efficiency of drafting procedures. Keeping this in mind, the curriculum is framed to develop basic skills and competency required.

2. COMPETENCY

The course content should be taught and curriculum should be implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Prepare detailed engineering and construction designs and drawings required for civil engineering activities using advanced CAD software.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Apply basic CAD command to develop 2D and 3D drawings of residential & commercial building using AutoCAD.
- ii. Prepare detailed engineering and construction drawings and designs required for civil engineering activities.
- iii. Use advanced CAD commands for edit/modification of existing drawings as per needs and suggestions and print the same.

	Examination Scheme			Total Credits	cheme	ching S	Tea	
Total	Marks	Practical	Theory Marks		(L+T+P)	(In Hours) (L+T+		(
Marks								
	PA	ESE	PA	ESE	С	Р	Т	L
100	60	40	00	00	04	04	00	00

4. TEACHING AND EXAMINATION SCHEME

 $\label{eq:Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit; ESE - End Semester Examination; PA - Progressive Assessment$

5. COURSE DETAILS

Note: There are no separate classes for theory as given below. The relavant theory has to be discussed before the practical during the practical sessions.

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
Unit – I	1a. Demonstrate the basics of AutoCAD software and its important commands	 1.1 File menu of AutoCAD with New, Open, Save, Save as and Close 1.2 Basic 2D commands like Line, Circle
Introduction to AutoCAD	 1b. Prepare a simple building drawing file using basic draw and modify 	 1.2 Basic 2D commands like Line, Chele, Ellipse, Multi Line ,Construction Line, Polyline, Point, Donut, Ellipse, Polygon, Rectangle, Arc 1.3 Erase, Snap, Redraw, Regenerate ,
	commands	Zoom, Pan
Unit – II Editing of	2a.Explain the applications of Edit commands 2b. Modify existing	 2.1 Modify Properties of Drawing Entity 2.2 Copy, Move, Rotate, Mirror, Offset, 2.3 Array, Scale, Stretch, Lengthen, Trim,
AutoCAD Drawing	AutoCAD Drawing 2c. Apply advanced command for edit	2.4 Extend , Break, Chamfer , Fillet2.5 Block, WBlock, Insert and Explode , Area2.6 and Volume with Civil Engineering
	/modification of drawing	2.7 Application
Unit – III	3a. Prepare typical Drawings	3.1 Application of LAYER command in Civil
	using Different Layers	2.2 Lower command with its all sub commands
Advanced	3h Develop final Drawings	Line type Color
2DCommands	with Dimension and Text	• Line type, color
	and Hatching	3.3 Dimension command – linea, aligned, arc
		length, radius, Diameter, Centre, Leader,
	• •	Baseline and Continuous
		Dimensioning, tolerance, override and
		Dimension updates Text and DTEXT
	6	commands with Text Style
		Hatch command
Unit – IV	4a. Use 3D commands to	4.1 Units, Elevation, Thickness, UCS and
	generate 3d view from 2D	UCS Icon
3D Commands of	drawing	4.2 Warmanda, Estanda, 2D.C. Hills
AutoCAD	the Property 3D Drewings	4.2 Viewports, Extrude, 3D Solids –
	40. Flepale 3D Drawings	Interference
	of AutoCAD	Interretence
	of AutoCAD	4.3.3D Surface – Revolved Tabulated and
	4c. perform	Ruled Surfaces
	rendering/shading on 3d	
	drawing	4.4 Hide, Render and Shade of 3D drawings
	-	C .

Unit	Major Learning Outcomes (in Cognitive Domain)	Topics and Sub-topics
Unit – V Plot of 2D & 3D Drawings	5a. Setup printer , plotter for printing of drawings	5.1 PLAN, ELEVATION and 3D Views of Residential and Commercial Building
Drawings	5b. Plot 2D and 3D Civil Engineering Drawings as per requirement on different scale and sizes	5.2 PLOT and its Sub Command for Plotting Drawing on A1, A2 and A3 Size Paper using Printer and / or Plotter

6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Not Applicable

7. SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercise (outcomes in psychomotor domain)	Approx Hours Reqd.
1		Draw Basic 2D objects such as line circle, polygon - (at least 04 objects)	04
2	I	Draw simple plan of a rectangular room or layout of given dimensions 02 drawings	08
3	III Draw a drawing of a plan of two BHK house		14
4	IV Draw Four 3D Geometrical Figures		12
5	V	Develop PLAN, ELEVATION and 3D Views of One Residential and One Commercial Building	18
Total Ho	urs	· · · · · · · · · · · · · · · · · · ·	56

8. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Visit to architect/civil engineering firm for understating the CAD and its applications and study of typical drawings prepared by AutoCAD
- ii. Collect different types of civil drawings in hard copy from architects, builders, and practicing engineers for preparing the same using CAD software

9. SPECIAL INSTRUCTIONAL STRETAGIES (If Any):

- i. Use projector to explain and demonstrate the use of AutoCAD commands. and students must have computer with software
- ii. CAD tutorial can be given to the students (available on internet)
- iii. Collect and provide different drawings prepared through AutoCAD and will show to students to motivate to prepare such type of Drawings.

10. SUGGESTED LEARNING RESOURCES

A. List of Books:

S.	Title of Books	Author	Publication
No.			
1.	AutoCAD Manual		Microsoft AutoDesk
2.	AutCAD – A problem solving Approach – 2013 & Beyound	Shamtikoo	AutoDesk
3.	Mastering AutoCAD	George Omura	Wily India
4.	AutoCAD	Rubenstein	Delmar

B. List of Major Equipment/Materials

- i. Computer system -Intel Core 2 Dual with 32 MB RAM 200mb hard disk and Mouse and Key Board
- ii. Printer and/or Plotter as per printing requirement

C List of Software/Learning Websites

- i. Authentic AutoCAD version 2006 or Higher can be down loaded from AICTE website
- ii. Autodesk web site

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. B. G. Rajgor, H.O.D, App. Mech., BBIT, V. V. Nagar
- Prof. Ravi R. Gurnani, Lecturer in Civil, T F G, Adipur
- Prof. C. H. Bhatt, Dr. S. & S.S. Ghandhy College, Surat
- Prof. K. K. Patel, H.O.D, G. P. Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. J. P. Tegar, Professor and Head Dept. of Civil and Environmental Engineering
- Dr. Subrat Roy, Professor, Dept. of Civil and Environmental Engineering