GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Advance Mathematics (Group-1) (Code: 3320002)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical Engineering, Chemical Engineering, Electrical Engineering, Computer Engineering, Electronics & Communication Engineering, Information Technology, Power Electronics	Second Semester

1. RATIONALE

The course is classified under Advance Mathematics and students are intended to understand the advance concepts and principles of Mathematics such as calculus, complex numbers and differential equations. This knowledge is required to understand and solve engineering problems.

2. COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of mathematical skills so that students are able to acquire following competencies:

- Use proper Mathematical tool to understand engineering principles and concepts.
- Apply concepts of calculus or suitable mathematical tool to solve given engineering problems.

3. TEACHING AND EXAMINATION SCHEME

	Teaching Scheme			Total		Exan	mination Scheme			
	(In Hours)		Credits (L+T+P)	Theory Marks Practic		l Marks	Total Marks			
	L	Т	Р	С	ESE	РА	ESE	РА		
1000	2	2	0	4	70	30	0	0	100	

 $\label{eq:Legends: L-Lecture; T - Tutorial/Teacher Guided Theory Practice; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment.$

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Complex Number	 1a.Simplify Complex expressions 1b.Find Modulus and Amplitude of given expressions 1c.Use De Moivre's Theorem to simplify mathematical expressions and to find roots 	Concept, Modules and Amplitude form, Root of Complex Number, De Moivre's Theorem. Apply concept of complex numbers in simple engineering problems.
Unit- II Function & Limit	2a .Solve the problems using functions 2b .Solve the problem of function using the concept of Limit	 2.1 Function Concept and Examples 2.2 Limit Concept of Limit, Standard Formulae and related Examples.
Unit– III Differentiation & it's Applications	 3a.Differentiate the various function 3b.Apply the differentiation to Velocity, Acceleration and Maxima & Minima 	3.1Differentiation : Definition, Rules of, Sum, Product, Quotient of Functions, Chain Rule, Derivative of Implicit functions and Parametric functions, Logarithmic Differentiation. Successive Differentiation up to second order 3.2 Application : Velocity, Acceleration, Maxima & Minima.(simple problems)
Unit– IV Integration & its application	 4a .Integrate the various function 4b .Apply the Integration for finding Area and Volume 	 4.1 Integration: Concept, Integral of Standard Functions, Working Rules of Integration, Integration by Parts, Integration by Substitution Method, Definite Integral and its properties. 4.2 Application: Area and Volume.(simple problems)
Unit-V Differential Equations(First Order First Degree)	 1a.Find the Order and Degree of a Differential Equation. 1b. Form a Differential Equation for simple Engineering problems 1c. Solve Differential Equations using Variable Separable, Homogeneous and Integrating Factor methods. 	 5.1 Definition, Order and Degree of Differential Equation 5.2 Formation of DE 5.3 Solution of DE of First Degree and First Order by Variable Separable, Homogeneous and Integrating Factor methods.
6		

4. DETAILED COURSE CONTENTS

Unit	Unit Title	Teaching Hours	Distribut	rks		
NO.			R Level	U Level	A Level	Tot al
Ι	Complex Number	3	2	5	3	10
II	Function & Limit	4	3	5	4	12
III	Differentiation & its Application	8	4	8	6	18
IV	Integration & its Application	8	4	8	4	16
V	Differential Equations	5	2	8	4	14
Total		28	15	34	21	70

Legends: R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The exercises should be properly designed and implemented with an attempt to develop different types of mathematical skills so that students are able to acquire above mentioned competencies.

S. No.	Unit	Practical Exercises			
	No.				
1	Ι	Complex Number, Practice Examples			
2		Use software for further understanding of applications			
3	II	Practice Examples of Function & Limit			
4		Use of Various Method/Techniques			
5	III	Differentiation and Related Examples			
6		Solve problems related to various methods/techniques of differentiations			
7	9	Identify the Engineering Applications from respective branches and solve the problems			
8	IV	Integration & Related Examples.			
9		Solve problems Related to Various Methods/Techniques of integration			
10		Identify the Engineering Applications from respective branches and solve problems			
11	V	Identify the corresponding Engineering Applications for differential equations from respective branches and solve the problems.			

Note: The above Tutor sessions are for guideline only. The remaining Tutorial hours are may be used by teachers appropriately for revision and practice.

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based Mini-Projects etc. These could be individual or group-based. Some of these activities may be as below:

- 1. Applications to solve identified Engineering problems and use of Internet.
- 2. Learn graphical sofwares:EXCEL,DPLOT,GRAPH etc.
- 3. Learn MathCAD to use Mathematical Tools and solve the problems of Calculus.
- 4. Learn MATLAB and use it to solve the identified problems.

8. SUGGESTED LEARNING RESOURCES

S.No.	Author	Title of Books	Publication
1	Anthony croft and others	Engineering Mathematics (third edition)	Pearson Education,2012
2	Pandya NR	Advanced Mathematics for Polytechnic	Macmillan Publishers India Ltd.,2012
3	Deshpande S P	Polytechnic Mathematics	Pune Vidyarthi Gruh Prakashan,1984
4	Prakash D S	Polytechnic Mathematics	S Chand, 1985

A. List of Books

B. List of Major Equipment/ Instrument

- 1. Simple Calculator
- 2. Computer System with Printer, Internet
- 3. LCD Projector

C. List of Software/Learning Websites

- 1. Excel
- 2. D Plot
- 3. Graph
- 4 MathCAD
- 5. MATLAB

You may use other Software like Mathematical and other Graph

Plotting software. Use websites such as wikipedia.org, mathworld.wolfram.com Etc...

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE:

Faculty Members from Polytechnics

- Dr. N. R. Pandya, HOD-General Dept., Govt. Polytechnic, Ahmedabad
- Dr N A Dani, Lecturer, Govt. Polytechnic, Junagadh.
- Prof. (Smt) R L Wadhwa, Lect Govt Polytechnic, Ahmedabad
- **Prof. H C Suthar**, BPTI, Bhavnagar
- **Prof. P N Joshi**, Govt Polytechnic, Rajkot

Coordinator and Faculty Member From NITTTR Bhopal

- Dr. P. K. Purohit, Associate Professor, Dept. of Science.
- Dr. Deepak Singh, Associate Professor, Dept. of Science.

GTU/ NITTTR Bhopal/12 -13

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Basic Physics (Group-2) (Code: 3300005)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics & Communication Engineering	First Semester
Biomedical Engineering,Computer Engineering,Electrical Engineering,Information Technology,Instrumentation & Control Engineering,Power Electronics Engineering,Printing Technology	Second Semester

1. RATIONALE

As Physics is the mother of all engineering disciplines, students must have some basic knowledge on physics to understand their core engineering subjects more comfortably. Accordingly, in reviewing the syllabus, emphasis has been given on the principles, laws, working formulae and basic ideas of physics to help them study the core subjects. Complicated derivations have been avoided because applications of the laws and principles of physics are more important for engineering students.

As Physics is considered as basic science, its principles, laws, hypothesis, concepts, ideas are playing important role in reinforcing the knowledge of technology. Deep thought is given while selecting topics in physics. They are different for various branches of engineering. This will provide sound background for self-development in future to cope up with new innovations. Topics are relevant to particular program and students will be motivated to learn and can enjoy the course of Physics as if it is one of the subjects of their own stream.

Engineering, being the science of measurement and design, has been offspring of Physics

that plays the primary role in all professional disciplines of engineering. The different streams of Physics like Optics, Acoustics, Dynamics, Semiconductor Physics, Surface Physics, Nuclear physics, Energy Studies, Materials Science, etc provide Fundamental Facts, Principles, Laws, and Proper Sequence of Events to streamline Engineering knowledge.

<u>Note:-</u> Teachers should give examples of engineering/technology applications of various concepts and principles in each topic so that students are able to appreciate learning of these concepts and principles.

Laboratory experiments have been set up keeping consistency with the theory so that the students can understand the applications of the laws and principles of physics.

2. LIST OF COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies.....

- Select proper measuring instrument on the basis of range, least count & precision required for measurement.
- Analyze properties of material & their use for the selection of material mostly applicable for engineering users..
- Identify good & bad conductors of heat and proper temperature scale for temperature measurement
- Identify, analyze, discriminate and interpret logical sequence of field problems with the study of physics.
- Analyze variation of sound intensity with respect to distance.
- Follow the principles used in the physical properties, its measurement and selections.

Tea	ching Sch	eme	Total		Exa	mination Sch	eme	
(In Hours)	Credits (L+T+P)	Theory Marks		Practica	l Marks	Total Marks
L	Т	Р	С	ESE	РА	ESE	РА	
3	0	2	5	70 30		20	30	150

3. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit; ESE - End Semester Examination; PA - Progressive Assessment.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics				
Unit – I	*Explain Physical Quantities	1.1 Need of measurement and unit in engineering and science,				
	and their units.	definition of unit, requirements of standard unit, systems of				
	*Measure given dimensions by	units-CGS,MKS and SI,				
	using appropriate instruments	fundamental and derived quantities and their units				
	accurately.	1.2 Least count and range of instrument, least count of vernier				
	*Calculate error in the	caliper, micrometer screw gauge				
	measurement	1.3 Definition of accuracy, precision and error,				
	*Solve numerical based on	estimation of errors - absolute error, relative error				
	above outcomes	and percentage error, rules and identification of				
		significant figures.				
		(Numerical on above topics)				
Unit– II	*State Coulomb's law, Ohm's	2.1 Concept of charge, Coulomb's inverse square law, Electric				
	law and Kirchhoff's law	field, intensity, potential and potential difference.				
	*Explain Electric field,	, 2.2 Electric current, Ohm's law, laws of series and parallel				
	potential and potential	combination of resistance				
	difference	2.3 D.C. circuits, Kirchhoff's law, heating effect & chemical				

Unit	Major Learning Outcomes	Topics and Sub-topics
	*Define intensity, electric	effect of current
	current, resistance	
	*Apply laws of series and	(Numericals on above topics)
	parallel combination to	
	*Explain heating & chemical	
	effect of current	
	*Solve numerical based on	
	above outcomes	
Unit– III	*Define magnetic intensity and	3.1 Magnetic field and its units magnetic intensity magnetic
	flux and state their units	lines of force magnetic flux and their units
	*Distinguish between dia, para	
	and ferro magnetic materials	3.2 Dia, Para, Ferro magnetic materials
	*Explain electromagnetic	2.2 Electrony distribution I and the Applications
	*State long's law	3.5 Electromagnetic induction, Lenz's law and its Applications,
	*State applications of AC	
Unit_IV	*Define types of materials	
	based on energy bands	4.1 Conductors, Insulators and Semiconductors, Energy bands,
	*Distinguish between intrinsic	dependence of conductivity Superconductivity
	and extrinsic semiconductors	dependence of conductivity, superconductivity
	*Explain p-n junction diode and	4.2 p-n junction diode and its characteristics, Rectifier circuits -
	its characteristics	Full wave, half wave and bridge rectifiers (no design)
	*State applications of diodes	12 minutes transition and and other
	*state advantages of bridge	4.5 semiconductor transistor pnp and npn and their characteristics transistor operation in CE mode relation of
	* Explain types of transistors	current gain
	*Explain characteristics of	
	transistors	4.4 Introduction to nanotechnology
	*Explain transistor operation in	
	CE mode	
	*State relation of current gain	
	* Define nanotechnology and	
TI:4 X/	*Europein applications	Definition of more motion annulitude neried frequency and
Umi- v	motion with example	Definition of wave motion, amplitude, period, frequency, and
	*Distinguish between	wavelength longitudinal and transverse wave, principle of
	longitudinal and transverse	superposition of waves, definition of stationary wave, node
	waves	and antinode, definition of resonance with examples, Formula
	*Explain propagation of sound	for velocity of sound in air
	in air.	Properties Of Light, Electromagnetic spectrum, Reflection,
	* State properties of light.	refraction, snell's law, diffraction, polarization, interference of
	*Define reflection, refraction	light, constructive and destructive interference (Only
	*Explain physical significance	neuronal significance of refractive index dispersion of light
	of refractive index	LASER Properties of laser spontaneous and stimulated
	* Explain dispersion of light	emission, population inversion, optical pumping, construction
	*State Properties of laser	and working of He-Ne laser, applications of lasers.
	*Explain spontaneous and	Fibre Optics, Introduction, Total internal reflection, critical
	stimulated emission, population	angle, acceptance angle, Structure of optical fibre, Numerical
	inversion and optical pumping	Aperture, Fiber optic materials, Types of optical fibres,
	*Explain construction and	Applications in communication systems.
	*State applications of lagers	
	* Explain principle & working	
	of optical fibres	

Unit	Major Learning Outcomes	Topics and Sub-topics
	* State applications of optical fibres in communication systems	

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R Level	U Level	A Level	Total
1.	SI Units & Measurements	05	03	02	05	10
2.	Static & Current Electricity	10	05	05	08	18
3.	Electromagnetism & AC Current	08	04	05	03	12
4.	Semiconductors & Nano- technology	10	06	06	05	17
5.	Sound, Laser & Optical Fiber	09	04	06	03	13
	Total	42	22	24	24	70

Legends: R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

6. SUGGESTED LIST OF EXPERIMENTS

The experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency -

S. No.	Unit No.	Experiment			
1	1	To Measure linear dimensions by vernier caliper and calculate volume			
2	1	To Measure linear dimensions by Micrometer screw			
3	2	To calculate resistance using Ohm's law			
4	2	To verify law of Resistance in series and parallel			
5	2	To find unknown resistance through whetstone bridge			
6	3	To determine A.C. frequency with the help of sonometer			
7	1,2	To determine errors in electrical measurements			
8	5	To determine the divergence of He-Ne laser beam.			
9	3	To Measure A.C. Power using resistive load			
10	3	Measurement of Energy			
11	4	To study p-n junction in forward bias			
12	4	To calculate SA/V ratio of simple objects to understand nanotechnology			

• Hours distribution for Physics Experiments :

Minimum 8 experiments should be performed from the above list

Sr.	Description	Hours	
No.			
1	An introduction to Physics laboratory	02	
	and its experiments (for the set of first		
	four experiments)		
2	Set of first four experiments	08	
3	An introduction to experiments (for the	02	
	set of next four experiments)		
4	Set of next four experiments	08	
5	Mini project	06	5
6	Viva and Submission	02	
	Total	28	r

7. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

Laboratory based mini projects :

- 1. To calculate acoustics of given class room
- 2. To measure diameter and calculate resistance of given set of conductors

Teacher guided self learning activities :

- 1. To prepare a chart of applications of nanotechnology in engineering field
- 2. To prepare models to explain different concepts

Course/topic based seminars :

1. Seminar by student on any relevant topic

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication
1	Sears And	University Physics	Pearson Publication
	Zemansky		
2	Paul G Hewitt	Conceptual Physics	Pearson Publication
3	Halliday & Resnick	Physics	Wiley India
4	G Vijayakumari	Engineering Physics, 4e	Vikas-Gtu Students' Series
5	Arvind Kumar &	How And Why In Basic	Universities Press
	Shrish Barve	Mechanics	
6	Ncert	Physics Part 1 And 2	Ncert

S.No.	Author Title of Books		Publication
7	Giancoli	Physics For Scientists And Engineers	
8	H C Verma	Concepts Of Physics	
9	Gomber & Gogia	Fundamentals Of Physics	Pradeep Publications, Jalandhar

B. List of Major Equipment/ Instrument

- 1. Digital Vernier Calipers And Micrometer Screw Guage
- 2. Whetstone's Bridge
- 3. He Ne Laser Instrument
- 4. Digital Energy Meter
- 5. Resistance Box
- 6. Battery Eliminator
- 7. Digital Millimeters

C. List of Software/Learning Websites

- 1. www.physicsclassroom.com
- 2. www.physics.org
- 3. www.fearofphysics.com
- 4. www.sciencejoywagon.com/physicszone
- 5. www.science.howstuffworks.com

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. Dr. S. B. Chhag, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Rajkot
- 2. Ku. B. K. Faldu, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Ahmedabad
- 3. Shri D. V. Mehta, Lecturer in Physics, Science Deptt, RCTI, Ahmedabad
- 4. Shri S. B. Singhania, Lecturer in Physics, Science Deptt, Govt. Polytechnic, Ahmedabad

ers.co

5. Dr. U. N. Trivedi, Lecturer in Physics, Science Deptt, RCTI, Ahmedabad

Coordinator and Faculty Member From NITTTR Bhopal

1. Dr. P. K. Purohit, NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Basic Electronics (Code: 3320701)

Diploma Programmes in which this course is offered	Semester in which offered
Computer Engineering, Information Technology	Second Semester

1. RATIONALE

Electronics is an integral part of computers; hence students of computer engineering and information technology need to know the fundamental of electronics. This course has been designed to provide the needful inputs to handle simple electronic components and circuits. Students after studying this course will be able to understand the basics of analog electronics, various electronics components and develop skills to use simple electronic instruments needed for computer-based working environment.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competency:

• Apply the basic electronic skills as required in the field of computers and information technology.

Teaching So	heme	Total Credits	Examination Scheme				
(In Hour	rs)	(L+T+P)	Theory Marks		Theory Marks Practical Marks		Total Marks
LT	Р	С	ESE	РА	ESE	РА	150
3 0	2	5	70	30	20	30	150

3. TEACHING AND EXAMINATION SCHEME

 $\label{eq:Legends: L-Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;; ESE - End Semester Examination; PA - Progressive Assessment.$

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

DETAILED COURSE CONTENTS

Unit	Major Learning	Topics and Sub-topics			
	Outcomes				
Unit – I	1a. State the difference	1.1 Active and passive components.			
	between active and passive	1.2 Voltage and Current Source.			
Electronic	electronic components	1.3 Symbols of various Semiconductor			
Components	1b. Differentiate between	components.			
and Signals	voltage and current source.	1.4 Definitions of: amplitude, Frequency,			
	1c. Explain the signal	Phase, Wavelength			
	parameters	1.5 Definitions of: Signal, waveform, spectrum,			
	-	Time and frequency domain representation			
		1.6 Test Signals: unit step, unit impulse, and			
		unit ramp			
		1.7 Types of Signals: sinusoidal, triangular and			
		saw tooth, square			
Unit– II	2a. Describe the working and	2.1 P-N junction diode			
	applications of P-N	2.2 Bridge Rectifier			
Diodes and	junction diode.	2.3 'T' and ' π '' Filter circuits			
Applications	2b. Describe the working and	2.4 Zener diode, Zener diode as voltage			
	applications of Zener	regulator			
	diode.				
Unit– III	3a. Differentiate between PNP	3.1 PNP and NPN transistor (working principle)			
	and NPN transistor and	3.2 Transistor as switch			
Transistors	their applications	3.3 FET, working of PMOS and NMOS			
	3b. Distinguish between FET,	3.4 Working of CMOS Logic Family			
	MOS and CMOS and their				
	applications				
Unit– IV	4a. Describe the working	4.1 Types of feedback(Positive and Negative)			
	principle of oscillators	4.2 Principle of oscillation.			
Oscillators		4.3 Oscillators: Hartley and Colpitts			
Unit-V	5a. Differentiate the different	5.1 Analog and Digital display.			
	types of cables.	5.2 Cables: coaxial cable, twisted pair cable			
Cables,	5b. Distinguish the different	and fiber optic cable			
Connectors	types of connectors	5.3 Connectors: coaxial cable connectors, RJ-			
and	5c. Use different measuring	45, RS-232, HDMI connectors			
Measuring	instruments	5.4 Multimeters: Analog and digital multimeter			
Instruments		5.5 CRO: front panel controls and application			

		Distribution of Theory Marks				
Unit	Unit Title	Teaching	R	U	Α	Total
No.		Hours	Level	Level	Level	
Ι	Electronic Components and Signals	07	05	04	05	14
II	Diodes and Applications	10	04	04	10	18
III	Transistors	09	01	04	09	14
IV	Oscillators	07	04	04	02	10
V	Cable, Connectors and Measuring	00	02	02	10	14
v	Instruments	09	02	02	10	14
	Total	42	16	18	36	70

Legends:

R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the above mentioned expected competency.

S.	Unit	Practical Exercise	Approx		
No.	No.		Hours		
			Required		
1	All	Perform Basic operations on MultiSIM/ Electronic Workbench			
2	I, V	I, V Measure voltage and current of a given circuit using analog and			
		digital multimeters.			
3	Π	Test performance of P-N junction diode.	02		
4	V	Operate all controls of CRO front panel.	02		
5	I,V	Measure voltage and frequency of any given signal using	02		
		oscilloscope.			
6	II	Test performance of bridge rectifier.	02		
7	I	Measure parameters of various signals	02		
8	III	Test performance of transistor as a switch	02		
9	IV	Test the performance of the T-filter	02		
10	IV	Test the performance of the π -filter	02		
11	V	Test various cables for different applications	04		
12	V	Identify various connectors & Draw their diagram	02		
		Total	28		

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed individual or group-based student activities like:

- Course/topic based seminars,
- Teacher guided self learning activities,
- Course /library/internet/lab based mini-projects etc.

5.05

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Title of Books	Author	Publication
1	Principle of Electronics	V.K.Mehta	S.Chand & Co., latest edition
2	Electronics Principles	Albert Paul Malvino	McGraw Hill, latest edition
3	Electronics Devices and Circuit Theory	Robert L. Boylestad	Pearson, latest edition
4	Electronic Instrumentation	H.S.Kalsi	McGraw Hill, latest edition
5	Cables and Connectors	John Kadick	AVO International, latest edition

B. List of Major Equipment/ Cables and Connectors

- i. Analog multimeter, digital multimeter
- ii. CRO
- iii. Function generator
- iv. Different Types of Cables, Connectors

C. List of Software/Learning Websites

- i. Electronic workbench
- ii. MultiSIM

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE.

Faculty Members from Polytechnics

- **Prof. M.P.Parmar**, Incharge Head and Senior Lecturer, Information Technology Department, Government Polytechnic, Ahmedabad
- **Prof. Nandu Fatak**, Lecturer, Information Technology Dept. Government Polytechnic, Ahmedabad

Coordinator & Faculty Members From NITTTR, Bhopal

- **Prof.** (Mrs.) Susan S. Mathew, Associate Professor, Dept. of Electrical and Electronics Engg.
- Dr.(Mrs.) Anjali Potnis, Assistant Professor, Dept. of Electrical and Electronics Engg.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Advanced Computer Programming (Code: 3320702)

Diploma Programmes in which this course is offered	Semester in which offered
Computer Engineering, Information Technology	Second Semester

1. RATIONALE

Students in the previous semester have learned procedure for developing programs to solve simple problems using basic features of very popular language i.e. structured programming language `C'. This course deals with some advanced features of the 'C' language. The programming skills thus acquired can be used for developing programs with advance level programming features which in turn will be helping in developing practical applications for the scientific, research and business purposes.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

i. Develop structured, modular and memory efficient programs in 'C' using arrays, functions, pointers and data files.

3. TEACHING AND EXAMINATION SCHEME

	Teaching Scheme Total Credits			Examination Scheme					
	(In Hours)		(L+T+P)	Theory Marks		Practical Marks		Total Marks	
-	L	Т	Р	С	ESE	РА	ESE	РА	200
1	3	0	4	7	70	30	40	60	

 $\label{eq:Legends: L-Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit;; ESE - End Semester Examination; PA - Progressive Assessment.$

Note: It is the responsibility of the institute heads that marks for **PA of theory & ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

Unit	Major Learning	Topics and Sub-topics		
	Outcomes			
Unit – I	1a.Develop, debug and	1.1Declaring and initializing One-Dimensional		
Arrays	execute programs	Array and array Operations		
	which use reading,	i. Insertion		
	writing and	ii. Searching		
	manipulating single	iii. Merging		
	dimensional and	iv. Sorting		
	multidimensional	v. Deletion		
	arrays.	1.2 Introduction of String as array of characters		
		Declaration and Initialization of String		
		1.3Two-Dimensional Array and its Operations		
		i. Insertion, Deletion		
		ii. Matrix addition operation		
		1.4 Multi-Dimensional Arrays		
		1.5 sscanf() and sprintf() Functions		
		1.6 Drawbacks of Linear Arrays		
Unit– II	2a. Develop, debug and	2.1 Introduction and Features of Pointers		
Pointers	execute programs to	2.2 Declaration of Pointer		
	perform memory	2.3 Void Pointers		
	access using Pointers	2.4 Array of Pointers		
		2.5 Pointers to Pointers		
Unit– III	3a. Develop, debug and	3.1 Basics of Functions		
Functions	execute modular	3.2 Built-in and user defined Functions		
	programs by writing	3.3 Using String, Math and other built-in		
	and using Functions	functions		
		3.4 Advantages of using Functions		
		3.5 Working of a Function		
		3.6 Declaring, Defining and calling user defined		
		Functions-		
		3.7 The return Statement		
		3.8 Call by value and call by Kelefence		
		3.10 Popursion		
		3.10 Recuision		
		Recursion		
Unit IV	Aa Appreciate use of	4.1 Introduction		
Preprocessor	various header files	4.2 #define and #undef Directives		
Directives	4b. Define test and	4.3 #include #line Directive		
211001105	implement constant and	4.4 Predefined macros in ANSI C		
	Macro	4.5 Standard I/O Predefined Streams in stdio h		
		4.6 Predefined macros in ctype.h		
Unit– V	5a. Implement different	5.1 Introduction and Features of Structures		
Structure and	data types under a	5.2 Declaration and Initialization of Structures		
	and types under a	5.2 Declaration and mitianzation of Structures		

4. DETAILED COURSE CONTENTS

Unit	Major Learning	Topics and Sub-topics
	Outcomes	
Union	single structure	5.3 Array of Structures
	5b. Utilize memory	5.4 Pointers to Structure
	effectively using Union	5.5 typedef
		5.6 Enumerated Data Type
		5.7 Union
		5.8 Union of Structures
Unit– VI	6a. Develop, debug and	6.1 Introduction
Files	execute programs to	6.2 File Operations
	read and write data	i. Opening a File
	from secondary storage	ii. Reading a File
	devices	iii.Closing a File
		6.3 Text Modes
		6.4 Binary Modes
		6.5 File Functions
		i. fprintf()
		ii. fscanf()
		iii.getc()
		iv.putc()
		v. fgetc()
		vi.fputc()
		vii.fseek()
		viii. feof()
		•
		6.6 Command Line Arguments

Unit	Unit Title	Teaching	Distribution of Theory Marks (Duration – 48 Hours)				
No.		Hours	R Level	U Level	A Level	Total	
1.	Arrays	8	4	5	6	15	
 2.	Pointers	8	4	5	5	14	
3.	Functions	8	4	5	6	15	
4.	Preprocessor Directives	4	1	2	2	5	
5.	Structure and Union	6	2	3	4	9	
6.	Files	8	3	4	5	12	
	Total	42	18	24	28	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF PRACTICAL/EXERCISES

Write, test, debug and execute following programs to develop different types of skills leading to the achievement of desired competency as mentioned. Out of the following enough practical/Exercise should be selected from each unit to give total workload of 56 hours to students.

S. No.	Unit	Practical/ Exercises	
	No.		Hrs.
			Required
1	Ι	Write, test, debug and execute minimum five programs with	06
		array operations like insertion, searching, merging, sorting and	\mathbf{A}
		deletion.	
2	Ι	Write, test, debug and execute minimum five programs using	06
		two Dimensional and Multi-Dimensional arrays.	· · · · · ·
3	II	Write, test, debug and execute four programs using Pointers.	06
4	II	Write, test, debug and execute programs using array of	06
		Pointers and pointers of pointers.	
5	III	Write, test, debug and execute programs using String functions	06
		strlen(), strcpy, strcmp(), strlwr(), strupr(), strchr(), strcat() and	
		common math and other functions like sqrt(), pow(), ceil(),	
		round(), sin(), cos(), tan(), div(), abs() etc .	
6	III	Write, test, debug and execute programs using functions and	06
		passing function arguments.	
7	7 III Write, test, debug and execute programs using recursive		04
		functions.	
8	IV	Write, test, debug and execute programs for implementing	02
		Preprocessor Directives such as constants and Macros	
9	V	Write, test, debug and execute programs with various features	04
		of Structures	
10	V	Write, test, debug and execute programs using Union and	06
		Union of structures	
11	VI	Write, test, debug and execute programs using elementary	06
		read/write file operations.	
12	VI	Write, test, debug and execute programs using fprintf(),	12
		fscanf(), getc(), putc(), fgetc(), fputc(), fseek(), feof()	
		functions.	
	1	Total	70

7.

SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

- 7.1 Students will prepare file for the above mentioned Practical
- 7.2 Prepare presentation and deliver seminar on various topics covered like String functions, Pointers, Arrays, File Functions, Structures and Unions,
- 7.3 Students are expected to develop minimum one program of particular topic as an example to exhibit real life application.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

Sr.No.	Author	Title of Books	Publication
1	Kamthane, A.N.	Programming in 'C'	Pearson,2012
2	Balaguruswami,E.	Programming in ANSI C	TMH,2012
3	Kanetkar, Yashavant	Let us 'C'	BPB publications,2010

B. List of Major Equipment/ Software

- 1 Computer System with latest configuration
- 2 'C' Compiler

C. List of Software/Learning Websites

- 1 'C' Programming Language: http://www.w3schools.in/cprogramming-language/intro/
- 2 Learn C Online: http://www.learnconline.com/
- 3 'C' Frequently Asked Questions: http://www.c-faq.com
- 4 **'C'** Programming: http://www.cprogramming.com
- 5 Sams Teach Yourself C in 24 Hours: http://aelinik.free.fr/c/

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- 1. Dr. P.P.Kotak Head Computer Engg. Dept, AVPTI, Rajkot
- 2. Prof. K. N. Raval Head Computer Engg. Dep, RCTI, Ahmedabad
- 3. **Prof. R. M Shaikh** Head Computer Engg. Dept, KD Polytechnic, Patan.
- 4. **Prof. S. D. Shah** Lect. Computer Engg. Dept, RCTI, Ahmedabad

Co-ordinator and Faculty Members from NITTTR Bhopal

- 1. **Dr. K. J. Mathai**, Associate Professor Dept. of Computer Engineering and Applications
- 2. **Dr. R. K. Kapoor**, Associate Professor Dept. of Computer Engineering and Applications

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Static Web Page Designing (Course Code: 3320703)

Diploma Programmes in which this course is offered	Semester in which offered
Computer Engineering, Information Technology	Second Semester

1. RATIONALE

Today various technologies are available for developing web-based applications. These technologies can be equally used for developing both web based educational and business applications. These technologies are required for developing online educational applications such as organizational websites, educational website, virtual learning environments etc. and business applications in various fields such as products sale, banking, railways reservation, services etc. Therefore it is important that the students of polytechnics develop competency to use Hyper Text Markup Language (HTML) technologies for developing professional static web environment. This course would be the basis for developing dynamic web pages which will be taught in latter semesters.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Develop and host a static website using Hyper Text Markup Language with web technology features like Cascading Style Sheets etc.

Tea	ching S	cheme	Total Credits		E	xamination	Scheme			
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks Practica		Theory Marks Practical Marks		Total Marks
L	Т	Р	С	ESE	PA	ESE	РА	100		
0	0	4	4	00	00	40	60			

3. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Student Activity; P - Practical; C – Credit;; ESE - End Semester Examination; PA - Progressive Assessment.

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. DETAILED COURSE CONTENTS

Unit	Major Learning	Topics and Sub-topics
	Outcomes	
Unit – I	1a.Understand website	1.1 Overview of Web Design Concepts
	basics and overall	1.2 Web Development Teams
Web Site	website development,	1.3 Web Project Management Fundamentals
development	usability and	1.4 Web Site Development Process
Essentials	accessibility features	1.5 Web Page Layout and Elements
		1.6 Web Site Usability and Accessibility
		1.7 Configure Browsers Setting
		1.8 Navigation Concepts
		1.9 Web Graphics
		1.10 Multimedia and the Web
Unit– II	2a.Design a static	2.1 HTML and the Evolution of Markup
	website using various	languages
Hyper Text	HTML features	2.2 Create Hyperlinks
Markup		2.3 Create Tables
Language		2.4 Create Web Forms
(HTML)		2.5 Image Inserting Techniques
		2.6 Create Frames
		2.7 GUI HTML Editors
		2.8 Site Content and Metadata
Unit– III	3a.Develop static	3.1 Features of Dreamweaver Interface
	website using a	3.2 Setting Up a Site with Dreamweaver
Dreamweaver	development tools	3.3 FTP - Site Upload Feature of Dreamweaver
Basics		3.4 Create various types of Links
		3.5 Insert multimedia including text, image,
		animation & video
Unit– IV	4a.Design a uniform	4.1 Cascading Style Sheets for Web page design
	formatted website by	4.2 Creating CSS rules in Dreamweaver
Cascading Style	implementing CSS	4.3Format Text with CSS
Sheets	0.1	4.4Use of CSS Selectors
		4.5 Embed Style Sheets
		4.6Attach External Style Sheets
Unit- V 🥒	5a.Design a website by	5.1 Insert and Styling Tables
	implementing CSS with	5.2Import Table Data
Using CSS with	tables	5.3Style Tables with CSS
Tables		5.4Sort Data in Tables

Unit No.	Unit Title	Distribution of The Teaching(Duration			Theory	Marks Irs)
	Hours		R Level	U Level	A Level	Total
1	Unit – I Web Site development Essentials			Lever	Livia	
2	Unit– II Hyper Text Markup Language (HTML)	NOT APPLICABLE				
3	Unit– III Dreamweaver Basics					
4	Unit– IV Cascading Style Sheets					
5	Unit– V Using CSS with Tables					
	Total					

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

6. SUGGESTED LIST OF EXPERIMENTS

The experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of various competencies.

Unit	Experiment	Approx. Hrs.
No.		Required
1	Analyze 5 website on terms of usability and accessibility terms	04
2	Develop basic HTML pages with Tables and Hyperlinks.	06
2	Develop HTML pages with Frames	06
3	Explain various features of Dreamweaver interface.	06
3	Setup basic sites with Dreamweaver.	06
4	Develop various pages using Cascading Style Sheets to Style	08
	Your Page.	
4	Develop various pages using CSS Selectors and embedded Style	08
	sheets.	
5	Styling Tables with help of CSS.	08
5	Host the designed website on any web server	04
	TOTAL	56

7.

SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES

Following is the list of proposed student activities:

Identify various aspects of Web development by analyzing various sites online. Prepare a website using various templates available.

8. SUGGESTED LEARNING RESOURCES

S.No.	Author	Title of Books	Publication
1	Duckett, Jon	Beginning Web Programming with HTML, XHTML, and CSS	Wrox,2008
2	Powell, Thomas A.	HTML & XHTML: The Complete Reference	Mc GrawHill,2003
3	Shupe, Rich	Learning Flash CS4 Professional	Oreilly,2009
4	Bruce, Betsy	Sams Teach Yourself Macromedia Dreamweaver 4 in 24 Hours	SAMS

A. List of Books

B. List of Major Equipment

Computer System with latest configuration & Dreamweaver software

C. List of Software/Learning Websites

- Adobe Dreamweaver: Website:
 http://www.adobe.com/devnet/dreamweaver.html
- Learn HTML/CSS Website:

http://www.w3schools.com/html/default.asp

• Learn HTML/CSS Website: http://www.html.net/

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Member from Polytechnics

- 1. **Prof.K. N. Raval** Head Computer Engg. Dept. RCTI , Ahmedabad
- 2. **Prof.S. D. Shah** Lect. Computer Engg. Dept.RCTI, Ahmedabad
- 3. **Prof.R.K.Vaghela** Lect. Computer Engg. Dept. RCTI, Ahmedabad

Coordinatgor and Faculty Members from NITTTR, Bhopal

- **Dr. Shailendra Singh**, Professor, Dept. of Computer Engineering & Application
- 2. **Dr. Mathai K. James**, Associate Professor, Dept. of Computer Engineering & Application

1.