GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: SWITCHGEAR & PROTECTION (COURSE CODE: 3360901)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Sixth

1. RATIONALE

An electrical power system consists of generators, transformers, and transmission and distribution lines. In case of fault, an automatic protective scheme comprising of circuit breakers and protective relays isolate the faulty section providing protection to the healthy section. Safety of machines/equipment and human beings is the major criteria of every protection scheme. It is essential that the diploma pass out students should develop skills of operating various controls and switchgear in power system. They are also required to carry out remedial measures for faults/abnormalities in machines/equipment in power system using appropriate diagnostic instrument/devices. This course attempts to develop these skills in students and hence it is a core course for all electrical engineers.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Maintain various controls and switchgear in power systems.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Identify various types of faults in Power system
- ii. Explain working of different types of circuit breakers in power system.
- iii. Explain working of different types of relays in power system.
- iv. Maintain the protection of transmission line and feeder from various faults
- v. Protect transformer, alternator, motor and bus bar
- vi. Protect power system against over voltages

Tea	ching Scl	heme	Total	Examination Scheme				
(In Hours)		Credits $(\mathbf{L} + \mathbf{T} + \mathbf{P})$	Theory Marks		Practica	nl Marks	Total Morks	
			$(\mathbf{L}+\mathbf{I}+\mathbf{r})$					Marks
L	Т	Р	С	ESE	PA	ESE	PA	
4	0	2	6	70	30	20	30	150

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit ESE -End Semester Examination; PA - Progressive Assessment.

5. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	1
Unit – I	1a. Describe the functions of	1.1 Need of protective system
Elements of	basic elements of a protective	1.2 Functions of basic elements of a
Protection	system	protective system.
	1b. Describe the various types of	1.3 Types, causes and effects of various
	faults and abnormalities	Faults.
	occurring in a power system.	1.4 Protection zones : Backup
	1c. Explain the concept of the	protection zones
	Backup protection	1.5 Protective Transformers:
	1d. Explain the use of Current	Specifications and Connection
	Transformer (CT) and	diagram of Current Transformer and
	Potential Transformer(PT) in	Potential Transformer (single phase
	protection system.	and 3 phase)
	1e. Describe the working of	1.6 Current limiting reactors.
1	current limiting reactors and	1.7 Neutral Earthing
1	their arrangements	
1	1f. Describe various methods of	
1	neutral Earthing.	
Unit– II	2a. Describe protective system	2.1 Interrupting devices: Sequence of
Circuit	showing different circuit	operation and interlocking
Interrupting	interrupting devices using a	2.2 Fuse, types, characteristics, testing
Devices	line diagram	and applications
	2b. Explain the sequence of	2.3 Isolators.
	operation of and interlocking	2.4 Circuit breaker: Arc phenomena and
	of interrupting devices.	arc extinction, Construction,
	2c. Explain the terms associated	working principle of Oil circuit
	with fuse and circuit breaker.	breakers, Air break, Air Blast,
	2d. Explain characteristics of	Sulphur Hexa Fluoride (SF ₆) and
	fuse and circuit breakers.	vacuum circuit breakers.
	2e. Explain arc formation and	2.5 Auto-reclosure
	zero current interruption.	2.6 Testing of circuit breaker
	2f. Compare arc quenching in	2.7 Resistance switching
	A.C. and D.C. Circuit	2.8 Working principle of arc quenching
	Breaker.	in HVDC circuit breaker
	2g. Explain the resistance	
	switching.	
Unit III	2. Describe need for different	2.1 Protoctive relay classification
UIIII- III Drotoctive	sa. Describe need for unificient	and selection. Terms related to relay
Rolavs	2h State the terms related to	3.2 Principle of working construction
Kelay 5	relave	and operation of electromagnetic
	3c Explain concept of over	induction(shaded pole, watt-hour
	current and directional relays.	meter and induction cup). Thermal
	3d Explain setting of relays.	relav
	3e. Describe the testing	3.3 Settings of various types of relays
	procedure of various relays.	3 4 Directional relay
	Freedown of Amilous remains.	3.5 Distance relay(impedance,

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
		reactance and mho) 3.6 Negative phase sequence relay 3.7 Static relay, Construction and types 3.8 Principle and working of Microprocessor based relay 3.9 Maintenance and testing of relays
Unit–IV	4a. Compare various protection	4.1 Transmission line protection scheme
Protection of	scheme of transmission line.	4.2 protection scheme -Overload
Transmission	4b. Describe the criteria to	protection, Over-current and earth
Line and	selection the protection	fault protection, Time graded and
Feeder	scheme	current graded protection, Current
	4c. Explain simple Impedance	balance differential protection
	relay.	4.3 Carrier aided protection, Carrier
	4d. Explain need of carrier aided	inter-tripping, acceleration and
	protection.	blocking scheme
	4e. State the types of auto	4.4 Distance / Impedance protection
	Af Explain protection of feeders	4.5 types of Auto reclosing
	and ring mains and Bus bar	Ring Mains
	and Ting mains and Dus bar.	King Manis
Unit-V Protection of	5a. Explain various protection scheme for transformer.	5.1 Over current, Percentage differential and restricted earth fault protection
Transformer,	5b. Describe the inrush current	of Transformers
Alternator,	phenomenon in transformer.	5.2 Inrush phenomenon and over
Motor and	5c. Explain the protection offered	fluxing phenomenon in Transformer
Busbar	by Buchholz Relay.	5.3 Buchholz Relay, analysis of trapped
	5d Englain the foulte and	gases
	ou. Explain the faults and	operating conditions in Alternator
	5e Explain various faults	and its protection schemes
	occurring in motor and their	5 5 Various faults and abnormal
	protection schemes.	occurring in the Motor and its
	5f. Explain Differential	protection schemes
	protection of Bus bars.	5.6 Differential Protection of Bus bars
Unit-VI	6a. State the causes of over	6.1 Causes of over voltages
Over Voltage	voltage.	6.2 Methods of reducing over voltages
Protection	6b. Explain the characteristics of	6.3 Operating principles, construction
	Lightning Arrestor.	and applications of lightning
	5g. Describe the Insulation co-	arrester
	ordination and basic impulse	5.7 Insulation co-ordination, volt- time
	Insulation Level	insulation level

Unit	Unit Title	Teaching	Distri	bution of	f Theory	y Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Elements of Protection	08	04	02	02	08
II	Circuit interrupting Devices	10	05	06	04	15
III	Protective Relays	12	05	06	04	15
IV	Protection of Transmission Line	12	04	08	03	15
V	Protection of Transformer,	10	04	06	02	12
	Alternator, Motor and Bus Bar	10	04	00	02	
VI	Over Voltage Protection	04	03	02	00	05
	Total	56	25	30	15	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

Legends: R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual

distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	
1	I	Check the Polarity of Current Transformer and Potential Transformer and connect it with the relay.	02
2	П	Identify various switchgear equipment available in the lab and write its specification and symbols.	02
3	II	Identify parts of various circuit breakers and their specification	02
4	II	Find the fusing factor of a given fusing material.02	
5	II	Dismantle a Vacuum circuit breaker. 02	
6	II	Identify the various components of SF ₆ circuit breaker. 02	
7	III	Test overload relay and plot Time-Current characteristic	02
8	III	Use Buchholz relay for transformer protection.	02
9	III	Test thermal overload relay for protection of motor and set the relay properly.	02
10	III	Test static relay for the protection of motor	02
11	IV	Apply balance current protection scheme using appropriate switch gear	02

S. No.	Unit No.Practical Exercises (Outcomes in Psychomotor Domain)		Approx. Hours. Required	
12	IV	Interpret various protective scheme used for transmission lines and feeders (from Blue print and visit).	04	
13	I3IVDraw schematic diagram of protective schemes for 66 KV/132 KV/220 KV Substation nearby area. (after visit)04		04	
14	IV Visit a substation and prepare its technical report emphasizing on control side		04	
15	VInterpret the protection scheme for an alternator in power station (from Blue print and visit).04		04	
16	V	Interpret different protective scheme for transformer.	02	
17	7 VI Set up a Horn gap lightning arrester. 02		02	
	Total 42			
Note up(Note :P erform any of the practical exercises from above list for a minimum of 28 hours depending upon the availability of resources so that skills matching with the most of the outcomes of every			

units are included.

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- i. Prepare line diagram of substation (any one of 220/132/66 kV)
- ii. Prepare chart of basic elements of protective system.
- iii. List different types of relays, circuit breakers and collect literature from dealers/Manufactures/users and their websites (such as SEIMENS, BHEL, GE, L&T, Crompton, Power Grid Corporation etc)
- iv. Prepare display chart for various types of fuse.
- v. Prepare the chart for Combined Earth Fault and Phase Fault Protective scheme.
- vi. Download the video of functioning of HVDC circuit breaker, Lightning arrester.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation film to demonstrate the working principles, constructional features, testing and maintenance of different types of relays and circuit breakers
- ii. Arrange expert lectures by engineers of power distribution companies/suppliers of protection and switchgear equipments.
- iii. Arrange a visit to nearby substation and manufacturer site of protection panel
- iv. Arrange a visit to a relay testing laboratory.

10. SUGGESTED LEARNING RESOURCES

A) **Books**

S. No.	Title of Book	Author	Publication
1	Fundamentals of Power	Paithankar Y. G.and	PHI, New Delhi (Latest
1.	System Protection	Bhide S. R	Edition)
r	Power System Protection	Ram B and	TMH, New Delhi
۷.	and Switchgear	Vishwakarma D. N.	(Latest Edition)
2	Electrical Power	Uppal S.L.	Khanna Publications
5.			(Latest Edition)
4	Electrical Power System	Mehta V. K.	S. Chand Publications
4.			(Latest Edition)

S. No.	Title of Book	Author	Publication
5	Switchgear and	Rao S. S.	Khanna Publications, New
5.	Protection		Delhi (Latest Edition)
6	Electrical Power Systems	Rao S. S and Uppal S.	Khanna Publications (Latest
0.		L	Edition)
7	Switchgear and	Gupta J. B.	Katariya Pub. New Delhi
7.	Protection	_	(Latest Edition)
0	Power system Protection	Ravindranath B. and M.	Wiley Eastern Ltd, Delhi.
0.	and Switchgear	Chander	(Latest Edition)
0	Art and Science of	Wadhwa. C. L.	C.R.Mason, John Wiley, New
9.	Protective relaying		Delhi 🥂
B)	Major Equipment/ Instru	ment with Broad Specific	ations

Major Equipment/ Instrument with Broad Specifications B)

1.	Numerical relay panel with all protection	Time-overcurrent protection (definite-time/inverse-time/user- def.), Sensitive earth-fault detection, Inrush restraint, Motor protection(Undercurrent monitoring, Starting time supervision, Locked rotor, Overload protection, Temperature monitoring, Load jam protection			
2.	Static earth fault relay	Ratings : 5 A , 50 Hz, VA rating : 3 VA typical Setting ranges : Low-set : 0.1 A to 5.0 High set : 0.1 A to 50 A			
3.	VCB with operation simulation panel	VCB along with variable earth leakage relay, Over voltage / under voltage relay, loading facility, over / under frequency relay, overload relay, to operate under various abnormal conditions			
4.	Panel for Biased Differential protection of Transformer	•Test setup is equipped with single-phase type static relay connected with single- phase auto transformer, provides facility to vary current using a variac and rheostats.			
5.	Current Transformer (Metering)	LT Current transformers for metering -ring or window type1.Class of Accuracy0.52.Rated Burden5.00 VA3.Power Frequency Withstand3KV Voltage4.Highest System Voltage433 V5.Nominal System Voltage400 V6.Frequency50 Hz7.Supply System3 Ph. Solidly grounded Neutral SystemTransformation ratio specified from the following standard ratings as per requirement : Ratio50/5150/5300/5400/5			
6.	Current Transformer (protection)	Typical specification for a 11 kV CT System voltage:11 kV Insulation level voltage (ILV) : 12/28/75 kV Ratio: 200/1 - 1 - 0.577 A Core 1: 1A, metering, 15 VA/class 1, ISF<10 Core 2: 1 A, protection, 15 VA/5P10			

	Core 3: 0.577 A, Class PS, KPV>= 150 V, Imag at Vk/2 <=30 mA, RCT at 75 C<=2 ohms
	Short time rating:20 kA for 1 second
	Typical specification for a 11 kV VT
	System voltage: 11 kV
Potential	Insulation level voltage (ILV) : 12 /28/75 kV
Transformer	Number of phases: Three
	Vector Group: Star / Star
	Ratio: 11 kV/ 110 V
	Burden: 100 VA
	Accuracy: Class 0.5
	Voltage Factor: 1.2 continuous and 1.5 for 30 seconds
	With provision for fuse
Buchholz Relay	Buchholz Relay set up consisting of following:
-	- Digital AC Ammeter and Voltmeter
	-Gas actuated Buchholz Relay
	-Gas compressor for Relay
	-Duly wired built in control and protection unit
	-Built in power on indicator trip status indicator
	-Terminals for all the relay and necessary patch chords required
	to perform the experiment
	Potential Transformer Buchholz Relay

C) Software/Learning Websites

- i. WWW.nptel.iitm.ac.in
- ii. http://electrical-engineering-portal.com/download-center/electrical-software
- iii. http://electrical-engineering-portal.com/testing-commissioning-current-transformer#2

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. S. V. Jagani, Lecturer in Electrical Engineering ,Government Polytechnic, Dahod
- Prof. T. A. Patel, Lecturer in Electrical Engineering, Government Polytechnic, Dahod
- Prof. H. C. Chawda, Lecturer in Electrical Engineering, R.C. Technical Institute, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. (Mrs.) C.S. Rajeshwari, Professor, Department of Electrical and Electronics Engineering.
- **Prof. A.S. Walkey**, Associate Professor, Department of Electrical and Electronics Engineering.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: INSTALLATION, COMMISSIONING AND MAINTENANCE (COURSE CODE: 3360902)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Sixth

1. **RATIONALE**

Electrical Power system consists of a number of transformers, circuit breakers and other equipments which require installation, commissioning and regular maintenance to prevent permanent break down. Many times an engineering diploma holder has to carryout/supervises installation, commissioning and maintenance of various electrical equipments in power stations, substations and industry. This course will enable the diploma pass out student to understand the concepts, principles and acquire basic skills of installation, commissioning and maintenance of electrical equipments in power stations, substations and industry.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Undertake installation, commissioning and maintenance of various power system components and equipment

3. COURSE OUTCOMES (COs):

The theory should be taught and practical should be undertaken in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domains to demonstrate the following course outcomes:

- i. Unload the electrical equipments/machines based on scientific procedure
- ii. Commission various electrical equipment/machines
- iii. Prepare maintenance schedule of different equipment and machines
- iv. Prepare trouble shooting chart for various electrical equipment, machines and domestic appliances
- v. Carry out different types of earthing
- vi. Apply electrical safety regulations and rules during maintenance.

4. **TEACHING AND EXAMINATION SCHEME**

Teaching Scheme (In Hours)			Total Credits (L+T+P)	Examination Scheme Theory Marks Practical			Total Marks	
	(()	Marks Marks				
L	Т	Р	С	ESE	PA	ESE	PA	
4	0	2	6	70	30	20	30	150

 $\label{eq:Legends: L-Lecture; T - Tutorial/Teacher Guided Theory Practice; P - Practical; C - Credit, ESE - End Semester Examination; PA - Progressive Assessment.$

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes (in Cognitive Domain)	Topics and Sub-topics
Unit – I. Installation of Electrical Equipment	 1a. Describe the planning before unloading of heavy electrical equipments at site. 1b. Select appropriate tools for installation of electrical equipment 1c. Explain the procedure for handling, inspection, storage and installation of static and rotating electrical equipment. 	 1.1 Unloading of electrical equipment at site 1.2 Inspection of electrical equipment at site 1.3 Storage electrical equipment at site 1.4 Foundation electrical equipment at site 1.5 Alignment of electrical machines 1.6 Tools/Instruments necessary for installation 1.7 Technical report, Inspection, storage and handling of transformer, switchgear and motors
Unit-II Commissioni ng and Testing	 2a Describe various commissioning tests on electrical equipment/machines 2b Describe the specific test on electrical equipment/machines 2c Explain the standard tests performed on insulation oil 2d Determine the insulation resistance of electrical equipment/machines 2e Explain the procedure of drying the winding of electrical equipment/machines 2f Explain the various factor affecting the insulation resistance 2g Explain the need for gradual loading of electrical equipment 	 2.1 Tests before commissioning of electrical equipment- Electrical and Mechanical test, Preparations before commissioning of power transformer, Instruments required for testing 2.2 Specific tests on - Transformer, Induction motor, alternator, synchronous motor 2.3 Commissioning of power transformer, three phase induction motor and switchgear 2.4 Transformer insulation oil: Properties as per IS, sampling, testing and filtering/purifying, standard tests as per IS, classification of insulation resistance and Polarization Index, Factors affecting the insulation resistance of insulating materials 2.6 Drying the winding of electrical equipment and its record 2.7 Tests after and before commissioning and test certificate 2.9 Gradually loading of electrical equipment

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
Unit–IV Troubleshoo ting	 4a. State various internal and external faults that occur in electrical equipment 4b. State common troubles in various electrical equipment and machines 4c. Prepare trouble shooting chart for various electrical equipment, machines and domestic appliances. 	 4.1 Causes of faults in electrical equipment (Internal and external) 4.2 Instruments and tools for trouble shooting 4.3 Common troubles in electrical equipment DC Machines, AC Machines, Transformers, Circuit-breaker, underground cable, electrical Installation 4.4 Need of trouble shooting chart, 4.5 Trouble shooting chart for DC Motor, DC Generator, Transformer, Synchronous Motor, Induction Motor, Circuit-breaker 4.6 Trouble shooting chart for Domestic appliances- electrical iron, ceiling fan, Washing machine, Air cooler, Vacuum cleaner, Fluorescent tube light: Construction, working and troubleshooting chart
Unit-V Earthing	 5a Explain the need of earthing and the different methods of earthing 5b Explain the various factors affecting the earth resistance 5c Describe the various methods of measuring the earth resistance 5d Differentiate between equipment earthing and system grounding 5e Explain the earthing procedure in different types of electrical installations 	 5.1 Necessity of earthing 5.2 System earthing : advantage of neutral earthing of generator in power station 5.3 Equipment earthing: Objective 5.4 Types of earth electrodes 5.5 Methods of earthing : plate earthing ,pipe earthing and coil earthing 5.6 Earthing in extra high voltage and underground cable, Earthing resistance-factors affecting, Determination of maximum permissible resistance of the earthing system 5.7 Measurement of earth resistance: voltmeter-ammeter method, earth tester method, ohm meter method and earth loop tester method 5.8 Comparison between equipment earthing and system grounding 5.9 Earthing procedure - Building installation, Domestic appliances, Industrial premises, Earthing of substation, generating station and overhead line.

Unit	Major Learning Outcomes (in Cognitive Domain)	Topics and Sub-topics
Unit-VI Electrical Accidents and Safety	 6a. Explain the causes of electrical accidents 6b. Describe the procedure for shutting down of substation and power lines 6c. Explain the operation of different types of fire extinguishers 	 6.1 Causes of electrical accidents 6.2 Factors affecting the severity of electrical shock 6.3 Actions to be taken when a person gets attached to live part 6.4 Safety regulations and safety measures 6.5 Indian electricity supply act 1948-1956 6.6 Factory act 1948 6.7 Sub-station shut down Procedure 6.8 certificate of (i) requisition for shut down (ii) Permit to work and (iii) Line clear certificate 6.9 Instruction for the safety of persons working on a job with a permit to work 6.10Fire extinguishers-Fixed installation and portable devices

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching	Distri	Distribution of Theory Marks		
No.		Hours	R	U	Α	Total
		0	Level	Level	Level	Marks
Ι	Installation of Electrical Equipment	6	2	2	4	8
II	Commissioning and Testing	14	4	6	6	16
III	Maintenance of Electrical	12	4	5	5	14
	Equipment 🔶 📉	12	4	5	5	14
IV	Trouble Shooting	9	4	5	3	12
V	Earthing	9	2	5	5	12
VI	Electrical Accidents and Safety	6	2	3	3	8
	Total	56	18	26	26	70

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S.	Unit No.	Practical Exercises				
No.	Unit No.	(Outcomes in Psychomotor Domain)	required			
1	Ι	Prepare layouts of wiring for installation of given machine with specification	2			
2	II	Prepare test reports of an electrical machine after commissioning	2			
3	II	Perform various tests on insulating oil	2			
4	II Measure insulation resistance of a winding/cables/wiring installation		2			
5	III	Prepare maintenance schedule for power transformer	2			
6	III Prepare maintenance schedule for induction motor		2			
7	IV	Trouble shoot a ceiling fan				
8	IV	Dismantle and trouble shoot of fluorescent tube light	2			
9	V	Measure earth resistance of installation of building/domestic wiring and appliances by different methods	4			
10	V	Prepare plate/pipe earthing as per IS and measure the earth resistance	2			
11	V	Interpret IE rules pertaining to safety	2			
12	VI	Show the action to be taken when a person comes in contact with a live wire	2			
13	VI	Undertake drill operation for using fire extinguisher for safety against fire				
		Total	28			

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare journals based on practical performed in laboratory.
- ii. Solving numerical from different books for practice
- iii. List various instruments and tools used for troubleshooting
- iv. Find troubleshooting techniques and steps to troubleshoot various electrical equipment and machines
- v. Prepare trouble shooting chart for various electrical equipments
- vi. Site visit for commissioning of Transformer

SPECIAL INSTRUCTIONAL STRATEGIES (if any)

i. Show video/animation film to demonstrate earthing, grounding

- ii. Arrange a visit to nearby industry/substation to observe installation/commissioning and troubleshooting of various electrical equipment and machines.
- iii. Use Flash/Animations to demonstrate installation of various electrical equipment and devices.
- iv. Arrange expert lectures of the professional engineers involved in installation, commissioning and testing of heavy power equipments/machines.
- v. Give Mini projects to students

9.

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1.	Testing Commissioning operation and maintenance of Electrical Equipments.	Rao. S	Khanna Publication (Latest edition), New Delhi
2.	Installation, commissioning and maintenance of Electrical equipment	Singh Tarlok	S.K.Kataria and Sons, New Delhi, Second edition-2012
3.	Electrical power system	Wadhwa C.L.	New Age international Publications, New Delhi
4.	Relevant IS Code for-Installation, maintenance and commissioning of electrical equipments/machines	-	Latest code

B) Major Equipment/ Instrument with Broad Specifications

1.	Digital Multimeter	4 ¹ / ₂ digit hand held 9 V batteries operated, DC Voltage: 0 to
	-	0.001 mV - 1000 V, AC Voltage: 0 to 0.01 mV - 1000 V,
		AC Current: 0 to 100 nA – 10 A, DC Current: 0 to 100 nA –
		10 A,
2.	Digital Tachometer	Hand held, battery operated, 5 digit display contact Type, 60
		to 50000 r.p.m.,
3.	Oil testing kit.	Mains Supply : 230V AC $\pm 10\%$, 50Hz
		Single Phase Variac : 230V/ 0-270V
		High Voltage Source : 80kV, 20mA
		Voltmeter : 0 to 100kV

4. Megger

1000 M Ω range, Auto-ranging, Auto discharge

Insulation Testing:250V:500V:1000V:

5. Software/Learning Websites

- i. http://cercind.gov.in/ElectSupplyAct1948.pdf
- ii. www.lce.com/pdfs/The-PMPdM-Program-124.pdf
- iii. www.iapa.ca/pdf/prevent.pdf
- iv. http://cercind.gov.in/ElectSupplyAct1948.pdf
- v. www.pfeiffereng.com/Principals%20of%20Electrical%20Grounding.pdf

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE**

Faculty Members from Polytechnics

- **Prof. R D Panchal**, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad
- Prof. C T Patel, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. (Mrs.) C.S. Rajeshwari, Professor and Head, Department of Electrical and Electronics Engineering.
- Dr. Joshua Earnest, Professor, Department of Electrical and Electro

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: POWER SYSTEM OPERATION AND CONTROL (COURSE CODE: 3360903)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Sixth

1. RATIONALE

A diploma engineers working in power sector needs to have awareness of the all major activities related to transmission and distribution of power so that they are able to relate with the jobs assigned to them and appreciate the importance of the activities being performed. For example, they should be aware of active and reactive power control strategies/mechanisms, and methods to ensure power system stability. They should also be aware of load flow studies and how load dispatch is economized. Hence, this course is designed to develop awareness about these concepts in diploma pass outs so that they may appreciate different equipment and techniques being employed to ensure power system stability, to control flow of power and to ensure economic dispatch of load. Thus this course is important for diploma electrical engineers who wish to work in power generation, transmission and distribution companies.

2. **COMPETENCY**

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Explain different mechanism/techniques used to ensure power system stability, control of flow of power and economical load dispatch.

3. COURSE OUTCOMES (COs):

The theory should be taught and practical should be undertaken in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domains to demonstrate the following course outcomes:

- i. Represent the power system components p.u. system with single line diagram.
- ii. Explain methods for active and reactive power control.
- iii. Explain methods for economic load dispatch and unit commitment.
- iv. Explain methods to regulate the power for optimum power system stability.
- v. Describe importance of load flow analysis for safe power system operation.

Teaching Scheme			Total		Examination Scheme			
(In Hours)			Credits $(\mathbf{L} + \mathbf{T} + \mathbf{P})$	Theory Marks		Practical Marks		Total Marka
	1	1	$(\mathbf{L}+\mathbf{I}+\mathbf{I})$					Marks
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

4. TEACHING AND EXAMINATION SCHEME

 $\label{eq:Legends: L-Lecture; T - Tutorial/Teacher Guided Theory Practice; P - Practical; C - Credit ESE - End Semester Examination; PA - Progressive Assessment.$

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
Unit – I	1a Calculate the p.u. values of	1.1 Single phase representation
Representation	nower system parameters	of balanced three phase
of Power	The Derive the kW kVAr and power	networks
System	factor from complex power	1.2 The single line diagram and
bystem	1. Depresent any balanced three	impedance of reactance
	TC. Represent any balanced unec	
	phase system by single phase	Liagranii 1.2 Day wait (DII) avetome and
	system.	1.3 Per unit (PU) systems and
		related examples
•/		1.4 Complex power
Unit–II	2a. Explain the need to control	2.1 Transmission line voltages
Active and	transmission line voltages	2.2 Real and Reactive Power
Reactive Power	2b.Explain concept of real and	Transfer in long distance
Control	reactive power transfer in long	transmission lines
(Voltage	distance transmission lines	2.3 Conventional methods to
Control) Methods	2c. Describe the conventional	control real and reactive
Wiemous	methods to control real and	power
	reactive power 💦 💛 🧮	i. AGC
	i. AGC	ii. Transformer tap changer
	ii. Transformer tap changer	control
	control	iii. Phase shifting
	iii. Phase shifting transformers	transformers
	iv. Synchronous machine	iv. Svnchronous machine
	Excitation Control	Excitation Control
	2d Explain the following real and	2.4 Real and Reactive power
	reactive power control methods.	control methods.
	i Series and Shunt	i Series and Shunt
	compensation	compensation
	ii Load compensation and	ii I and compensation and
	system compensation	II. Load compensation and
	EACT controllers	::: EACT controllors: Sorias
	111. FACT controllers,	III. FACT controllers. series,
	2e. Describe the application of	snunt, series-snunt.
5	Series, snunt, series-snunt	2.5 Advantages and Disadvantages of EACT
	FACI controllers.	Disadvantages of FAC I
TT	2 D 1 d stasis for	controllers,
Unit– III Economia Load	3a. Describe the criteria for	3.1 Economical dispatch of power
Economic Loau Dispotch and	economical dispatch of power	3.2 Optimal unit
Dispatch and Unit	3b. Plan to implement the optimal	commitment(UC)
Commitment	unit commitment (UC) under	
Communent	various conditions.	
Unit–IV Deserver Secretaria	4a. Distinguish steady state, dynamic	4.1 Turbine speed governing
Power System	and transient stability.	system
Stability	4b. Explain steam turbine speed	4.2 Steady state stability,

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
	 governing mechanism. 4c. Describe the factors affecting transient stability 4d. Describe the equal area criterion to maintain steady state stability in inter connected power system. 	Dynamic stability, Transient stability 4.3 Equal area criterion
Unit– V Load flow Analysis	 5a. Justify the need for load flow analysis in interconnected power system: 5b. Select different types of buses. 5c. Use the GS and NR method to find different parameters (P,Q,Vs,Vr, δ) of transmission lines by using 3 bus power systems. 5d. Use the Concept of graph theory for DC load flow analysis. 	 5a. Load flow Analysis in interconnected power system: 5b. Different types of buses. 5c. GS and NR method to find different parameters (P,Q,Vs,Vr, delta) of transmission lines

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (Theory)

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Representation of Power System	06	04	04	02	10
II	Real and Reactive Power Control (Voltage Control) Methods	12	06	06	06	18
III	Economic Load Dispatch And Unit Commitment	06	02	06	04	12
IV	Power System Stability	08	04	08	02	14
V	Load flow Analysis	10	04	08	04	16
	Total	42	20	32	18	70

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)**Note:**This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in

a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Visit LDC and prepare detail report on it
- ii. Prepare report on case study for cascade tripping
- iii. Prepare a report on India's power grids, their power capacities and methods employed to ensure stability even after connecting them with each other.
- iv. Prepare flow chart for the GS method and NR method for load flow studies
- v. Prepare chart for various FACTs devices

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange Visit to State Load Dispatch centre (SLDC)
- ii. Provide as many simulation exercises to students as possible
- iii. Arrange expert lecture by some engineers working at load dispatch centers/Power transmission companies.
- iv. Discuss some case studies of black outs/grid failures due to power system instability

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1	Modern power system analysis	Kothari D. P. and Nagrath I. J.	Tata McGraw-Hill Publication New Delhi 2012 or latest
2	Electrical power system Design	Deshpande M. V.	Tata McGraw-Hill Publication New Delhi 2012 or latest
3	Electrical power system	Wadhwa C.L.	New Age international Publications New Delhi 2012 or latest
4	A course in Electrical Power	Gupta J.B.	S.K.Kataria and Sons New Delhi 2012 or latest
5	Power system analysis and Design	Gupta B. R.	S.Chand and Co. Ltd. New Delhi 2012 or latest

B) Major Equipment/ Instrument with Broad Specifications

High end computers to run software similar to MiPower/MATLAB/ETAP etc.

C) Software/Learning Websites

- i. MiPower software latest version with relevant tool boxes
- ii. MATLAB software latest version with relevant tool boxes
- iii. ETAP software latest version with relevant tool boxes
- iv. www.powergridindia.com
- v. www.wrldc.com
- vi. www.gseb.com

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

• **Prof.** N N Pandya, Lecturer in Electrical Engineering, Government Polytechnic, Ahmedabad

• **Prof. R D Panchal**, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad

• **Prof. C.T. Patel,** RC Technical Institute, Lecturer in Electrical Engineering, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. N. P. Patidar, Professor, Department of Electrical and Electronics Engineering
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

COURSE TITLE: DESIGN PARAMETERS OF ELECTRICAL EQUIPEMENT AND MACHINES (COURSE CODE: 3360905)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Sixth

1. RATIONALE

Technical personnel operating any electrical equipment and machines in an industry should be well aware of the basic design principles and key design parameters for better understanding of the functioning of those machines. This knowledge may be used to improve operating efficiency of the machines. Knowledge about design parameters also helps in maintaining those machines in a better way. In case of breakdown, knowledge of design parameters helps in selection of proper replacement materials and components. In some cases if specified components are not available then knowledge of design parameters may help in finding out alternative solutions. This course attempts to create the awareness of these parameters in diploma holders so that they can apply the general principles of design and knowledge of design parameters for better operation and maintenance of electrical equipment and machines. Knowledge so gained would also help students in deciding the specification of the equipment/machines to be purchased for some expansion or new projects. Studying this course will also enable a diploma pass out student to start his/her own business venture independently

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Apply the general principles of design and knowledge about design parameters for selection, operation and maintenance of electrical equipment and machines.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Analyze the general aspects of design of electrical equipment and machines
- ii. Design different types of starter, field regulator, choke and control panel.
- iii. Design different types of electromagnets
- iv. Design small transformer, understand the procedural steps to design a 3 phase transformers
- v. Design capacitor start single phase induction motor and understand the procedural steps to design a 3 phase Squirrel cage induction motor
- vi. Calculate various performance parameters for transformers and induction motor.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits			Examination Scheme					
((In Hours)		(L+T+P)	Theory Marks Practical Marks		Theory Marks		Total Marks
	-	1		Marks				
L	Т	Р	С	ESE	PA	ESE	PA	
3	0	2	5	70	30	20	30	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In Cognitive Domain)	
Unit – I. General Electrical Design Principles	 1a. Explain the term design and its limitations in electrical machines. 1b. State the properties of conducting, magnetic and insulating materials used in electrical machines. 1c. Describe the effect of heating and cooling on the performance of electrical machine. 1d. State the factors on which the specific magnetic and electric loadings depends. 1e. State the factors on which the output of an electrical machine depends. 1f. State the factors affecting the size of a rotating machine. 	 1.1 Design, Limitations of design, modern trends in design of electrical machines 1.2 Electrical properties of conducting, magnetic and Insulating Materials and its Classifications 1.3 Reasons for generation of heat in electrical machines. Concept of load and no load losses. 1.4 Heating and cooling of electrical machines 1.5 Specific magnetic and electric loading and their choice 1.6 Effect of type and quality of insulation on limits of allowed temperature rise and life of machine. 1.7 Output coefficient of DC and AC machine 1.8 Factor affecting size of machines 1.9 Duty cycle and equivalent ratings
Unit- II Design Parameters of Starters , Field Regulator and Control Panel	 2a. State the parameters for designing an iron cored choke suitable for 5 amps inductive current. 2b. Derive the calculation of resistance steps of a motor. 2c. Estimate number of resistance section and resistance of each section for a DC shunt and series a motor. 2d. State the parameters for the design of a starter for a 3 phase slip ring induction motor. 2e. State the parameters on which the size of the wire for a particular current carrying capacity of a field regulator depends. 	 2.1 Design parameters of choke 2.2 Design parameters of A.C. and D.C. motor starters 2.3 Design parameters of Field regulator 2.4 Design of general purpose control panels

Unit	Major Learning Outcomes	Topics and Sub-topics
	(In Cognitive Domain)	
Unit– III Design Parameters of Electromagnets	 3a. Explain the function of an electromagnet. 3b. State the commonly used electromagnets and its applications. 3c. Write four fundamental equations on which the dimensions of various electro-magnets depend. 3d. Explain steps to design electromagnet. 	 3.1 Electromagnets and its types 3.2 Design of Magnet coils 3.3 Steps to Design small Flat-faced armature type circular magnet 3.4 Steps to Design large-faced armature type circular magnet 3.5 Steps to Design Horse shoe type magnet 3.6 Steps to Design plunger type magnet 3.7 Steps to Design magnetic clutches
Unit–IV Design Parameters of Transformers	 4a. State the parameters of small transformer. 4b. Design small transformer. 4c. Compare power and distribution transformer from design point of view. 4d. Write the specifications of power and distribution transformer. 4e. Derive the output equation of a three phase transformer. 4f. Explain the effect of specific magnetic and electric loading on output of a transformer. 4g. Explain the effect of various electrical parameters on the performance of 3 phase transformer. 4h. Write the procedural steps for designing a three phase transformer. 	 Design of small Transformers 4.1 Core design 4.2 Winding design 4.3 Window area 4.4 Problem design of single phase transformer for 230V 50hz supply to deliver (3 to 5) amp at (12 to 50) volt Design Parameter of Three Phase Transformer 4.5 Power and distribution transformer from design point of view. 4.6 Specifications-Rating and performance expectation. 4.7 Output equation. Choice of Specific magnetic and electric loading. Core losses and copper losses. 4.8 Design of core, winding and main dimensions of frame, Electrical parameter -resistance, reactance, Magnetising current, Design criteria for tank. 4.9 Procedural steps for design of transformer.
Unit-V Design Parameters of Induction Motors	 5a. Design the main dimensions of a single phase induction motor. 5b. Explain the basis on which air gap, number of stator and rotor slots are chosen. 5c. Write the procedural steps for designing a single phase capacitor start induction run motor. 5d. Explain basic considerations for 	 5.1 Single phase induction motor -Design considerations and specification. 5.2 Material of core, conductor and insulation. 5.3 Design of core diameter and axial length. 5.4 Choice of air gap, number of stator slots, rotor slots. 5.5 Design of main winding. 5.6 Maximum torque. 5.7 Reactance. 5.8 Procedural steps for designing capacitor start induction run motor. 5.9 Sample examples 5.10 Three phase induction motor (no
	design of a three phase induction motor	calculation) - Basic consideration for design.

Unit	Major Learning Outcomes (In Cognitive Domain)	Topics and Sub-topics
	5e. Design main dimensions of a three phase induction motor5f. Write procedural steps for designing a three phase squirrel cage induction motor.	 5.11Frame. 5.12Rating. 5.13Duty and rating. 5.14Temperature rise. 5.15Output equation, choice of specific electric loading. 5.16Relation between L and D for best power factor. 5.17Procedural steps for design of a 3 Phase Squirrel Cage Induction Motor.

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	it Unit Title Teaching Distribut			ibution o	oution of Theory Marks		
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	General Electrical Design Principles.	6	4	4	2	10	
Π	Design Parameters of Starter , Field Regulator & Control Panel	8	4	3	7	14	
III	Design Parameters of Electromagnets	8	6	2	4	12	
IV	Design Parameters of Transformers	10 🛋	7	4	7	18	
V	Design Parameters of Induction Motors	10	5	4	7	16	
	Total	42	26	17	27	70	

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED PRACTICALS/EXERCISES

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practicals/Exercises (Outcomes in Psychomotor Domain)	Approx Hours. Required
1	Ι	Prepare a brief report of various methods of cooling of transformer which are used in industries, power station and substation. (along with their ratings) (different group of students can visit different industries,	4

S. No.	Unit No.	Practicals/Exercises (Outcomes in Psychomotor Domain)	Approx Hours. Required		
		power station and substation and prepare a brief report)			
2	II	Design a control panel for your college. (Electrical Engineering laboratory, workshop, or control panel for complete college)	4		
3	Π	Design a.c. / d.c. starter for any motor which is present in your laboratory.	4		
4	III	Design small flat faced armature type circular magnet using the given data. Also draw the above using AutoCAD.	4		
5	III	Design large faced armature type circular magnet using given data. Also draw the above using AutoCAD.	4		
6	III	Design Horse shoe type magnet using the given data. Also draw the above using AutoCAD.	4		
7	III	Design large faced armature type circular magnet using the given data. Also draw the above using AutoCAD.	4		
8	IV	Design single phase transformer for 230V 50hz supply to deliver (3 to 5) amp at (12 to 50) volt. Also draw the above using AutoCAD.	4		
9	IV	Design single phase transformer using software.	2		
10	IV	Design Distribution Transformer in your college premises or using relevant data. Also draw the above using AutoCAD.	4		
11	IV	Prepare Flow chart for designing transformer	2		
12	V	Design single phase induction motor used to fill an overhead tank. Also draw the above using AutoCAD	4		
13	V	Design single phase induction motor using software.	2		
14	V	Design 3-phase induction motor which is present in your laboratory. Also draw the above using AutoCAD	4		
15	V	Design 3-phase induction motor using software	2		
16	V	Prepare Flow chart for designing induction motor	2		
	·	Total Hours	54		
NOTI	NOTE: Perform any of the practical exercises for total minimum of 28 hours from above list				

NOTE: Perform any of the practical exercises for total minimum of 28 hours from above list depending upon the availability of resources so that skills matching with the most of the outcomes in the all units are developed.

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare journals based on practical performed in laboratory.
- ii. Prepare chart displaying various parts of transformer, motors etc.
- iii. Using internet find different material used for construction of transformer and motors in recent trends.
- Survey the market and compare design of induction motors from different manufacturers based on materials used (in winding, insulation, frame, slip rings/squirrel cage, etc.) Losses, efficiency, expected life, temperature rise, type of bearings, noise level, type of cooling, cost etc.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation film to demonstrate the working principles, constructional features, testing and maintenance of different electric machines.
- ii. Arrange a visit to nearby manufacturer of electrical machines such as motors/transformers
- iii. Arrange expert lectures of design engineers working in nearby electric machine manufacturing companies.
- iv. Give mini projects to students about design of simple machines.

10. SUGGESTED LEARNING RESOURCES

A)	Books
----	-------

S. No.	Title of Book	Author	Publication
1.	Design and testing of electrical machines	Deshpande M. V.	Wheeler Publishing, latest edition
2.	Electrical Machine Design	Mittle V. N. & Mittal Arvind	TMH publications, latest edition
3.	Electrical Machine Design	Shawney A. K.	Dhanpatrai & sons. Pub, latest edition
4.	Electrical Estimating & Costing	Alagappan N. & Ekambaram S. (TTTI, Madras)	Tata McGraw hill Ltd., latest edition
5.	Electrical Estimating & Costing	Surjit Singh	Dhanpat Rai & sons, latest edition
6.	Electrical Design, Estimating & Costing	Raina K.B. & Bhattacharya S.K. (TTTI, Chandigarh)	Wiley Eastern Ltd., latest edition
7.	Electrical Installation, Estimating & Costing	Gupta J.B.	S. K. Kataria & Sons, latest edition
8.	Electrical Machine Design	Agrawal R. K.	S.K.Kataria & Sons, latest edition
9.	Electrical Machine Design	Sen. S. K.	Oxford Publications, latest edition
10.	Electrical Machine Design	Gray A.	McGraw Hill publications, latest edition

B) Major Equipment/ Instrument with Broad Specifications

- i. AutoCAD Electrical : Latest version software
- ii. MATLAB/SIMULINK : Latest version
- iii. Electrical CAD software: Latest version
- iv. Venire calipers:v. ModelsSuitable for measuring dimension of motor and transformer Showing cross section of different types of motors and transformers.

C) List of Software/Learning Websites

- i. www.nptel.iitm.ac.in
- ii. www.youtube
- iii. www.howstuffworks.com

11. **COURSE CURRICULUM DEVELOPMENT COMMITTEE**

Faculty Members from Polytechnics

- Prof. H. C. Chawda, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad
- Prof. R. N. Shah, Lecturer in Electrical Engineering, Govt. Polytechnic Patan.

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. (Mrs.) C.S. Rajeshwari, Professor and Head, Department of Electrical & Electronics Engineering,
- Dr. Joshua Earnest, Professor, Department of Electrical & Electronics Engineering.

.tr. . & Electo

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: ELECTRICAL DRIVES (COURSE CODE: 3360906)

Diploma Programme in which this course is offered	Semester in which offered	
Electrical Engineering	Sixth	

1. RATIONALE

Today's industrial and domestic loads demands precise and smooth variable speed control. The development of compact thyristor power converters has made this possible by smooth speed control of both AC and DC motors which are employed for several applications such as DC/AC drives, Vehicles and renewable energy. This course enables to develop the basics of electric drives and maintain different types of DC/AC drives in industries.

The competency in this area is highly required in diploma pass outs working in most of the industries since these industries employ large number of motors and drives and their smooth operation and maintenance requires lot of competent man power. Thus this course is must for students who want to work in industries.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Operate and maintain different types of DC/AC and special electrical machine drives in the industry.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Select a drive for a particular application based on power rating.
- ii. Select a drive based on mechanical characteristics for a particular drive application.
- iii. Operate and maintain solid state drives for speed control of DC machines.
- iv. Operate and maintain solid state drives for speed control 3 phase induction motor.
- v. Operate and maintain solid state drives for speed control of 3 phase Synchronous motor.
- vi. Operate and maintain solid state drives for speed control of various special electrical machines.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Scheme	Total Credits	Exa		camination Scheme			
(In Hours)		urs)	(L+T+P)	Theory Marks		Pra Ma	ctical arks	Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA		
3	0	2	5	70	30	20	30	150	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, ESE - End Semester Examination; PA - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I	1a. Explain the working of an	1.1 Electric drive, types, AC v/s DC
	electrical drive with the help of	drives, choice of electric drives
Basics of	a neat block diagram.	1.2 Parts of electrical drive-Source, power
Drivos	1b. Justify the selection criteria for	modulator, electric motor and control
DIIVES	electrical drive(s)	unit 1.3 Selection of electric drive for
	1c Select electric drives for a	applications: agricultural pumps steel
	given application.	mills, paper mills, rolling mills,
		spinning mills, cement industries,
		chemical industries, refineries,
		shipping, power stations and
		automobiles
	Id. Use heating and cooling curve	1.4 Heating and cooling curve
	a drive	1.5 Motor duty class, classification-
	le Determine power rating for	periodic
	different load curves by	a. Motor power rating for continuous.
	equivalent current, torque and	short time and intermittent duty,
	power methods.	equivalent current, torque and
	1f. Select a motor on the basis of	power methods for fluctuating and
	duty cycles of motors.	intermittent loads.
In:t II	20 Explain the nature of speed	2.1 Standy state load Torque aread
Unit– 11	za. Explain the nature of speed	2.1 Steady state load lorque speed
Dynamics of	types of loads and drive motors	2.2 Multi quadrant operation of drives
Electrical	with the help of neat sketch.	2.3 Types of Braking-(a) Plugging, (b)
Drives	2b. Explain the multi quadrant	dynamic/rheostat braking and (c)
	operation of electrical drive.	regenerative braking.
	2c. Describe different methods of	2.4 Starters- Typical control circuits for
	braking used in any electric	shunt and series motors, Three phase
	drive.	squiffer cage and shp ring induction
	2d Describe the basic concept of	2 5 Close loop control of drives
	various control loops used in	i. Current limit control
	electrical drives.	ii. Close loop torque control
		iii. Close loop speed control
		iv. Close loop speed control of multi
		motor drive
Unit– III	3a. Explain conventional speed	3.1 Speed control of DC series and shunt
	control technique(s) of DC	motors – armature and field control.
DC Drives	motors.	3.2Solid state speed control of single
	3b. Explain various solid state	phase and 3 phase DC drives with the
	speed controls of single and	following:
	three phase DC drives.	1. Half wave converter
	3c. Describe the speed control of	11. Semi converter

Unit	Major Learning Outcomes	Topics and Sub-topics
	chopper controlled DC drives.	 iii. Full converter iv. Dual converter 3.3 Solid state speed control of separately excited shunt and series motor drives 3.4 Chopper controlled drives
Unit– IV AC Drives - Three Phase Induction Motor Drive	 4a. Explain speed control methods of a 3 phase induction motor. 4b. Explain the working of various 3 phase induction motor drives for precise variable speed control. 	 4.1 Basic principle of 3 phase induction motor drive. 4.2 Solid state control of 3 phase induction motor: Stator voltage control -3 phase AC voltage controller and soft start. Stator variable frequency control-voltage source inverter- PWM drives and current source inverter drives, cycloconverter fed IM drive. Stator voltage and frequency control - Basics of V/f drive, scalar and vector or field oriented control of drives, V/f sensor less flux control drive. Static rotor resistance control Slip power control – Static Kramer and Static Scherbius drive.
Unit– V AC Drives - Three Phase Synchronous Motor Drive	 5a. Explain the principle of two modes of variable frequency control in 3 phase synchronous motor. 5b. Explain the working of self-controlled synchronous motor drive employing load commutated thyristor inverter for high speed and high power applications. 5c. Describe the working of a cycloconverter fed Synchronous motor. 	 5.1 Control of synchronous motor - Synchronous mode and Self mode. 5.2 Self-controlled synchronous motor drive employing load commutated thyristor inverter, closed loop control 5.3 Self-controlled synchronous motor drive employing cycloconverter
Unit– VI Drives for Advanced Electrical Machines	 6a. Describe the working of various advance electrical machines drives. 6b. Explain the working of solar powered pump drives. 6c. Explain the working of battery powered electrical vehicles. 	 6.1 Drive for brushless DC motor 6.2 Stepper motor drive 6.3 Drive for switched reluctance motor solar powered pump drive 6.4 DC drives with chopper control for electrical vehicle. 6.5 Induction motor drive with voltage source inverter control for electrical vehicle.

Unit	Unit Title	Teaching	Distr	ibution o	f Theory	Marks
No.		Hours	R Level	U Level	A Level	Total Marks
Ι	Basics of Electrical Drives	08	02	04	02	08
II	Dynamics of Electrical Drives	08	02	04	04	10
III	DC Drives	10	04	04	06	14
IV	AC Drives – 3 Phase Induction Motor Drives	10	04	06	08	18
V	AC drives – 3 Phase Synchronous Motor Drives	12	02	04	04	10
VI	Drives for Advance Electrical Machines	08	02	02	06	10
	Total	56	16	24	30	70

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (Theory)

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy) **Note:** This specification table shall be treated as a general guideline for students and teachers. The actual Distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED PRACTICALS/EXERCISES

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical/Exercises (Outcomes in Psychomotor Domain)	Approx. Hours Required
1	III	Test the performance of DC shunt motors.	2
2	III	Test the performance of DC series motors.	2
3	III	Control the speed of DC motor using single phase half wave Converter.	2
4	III	Control the speed of DC motor using single phase semi converter.	2
5	III	Control the speed of DC motor using single phase full converter.	2
6	III	Control the speed of DC motor using single phase dual converter.	2

S. No.	Unit No.	Practical/Exercises (Outcomes in Psychomotor Domain)	Approx. Hours Required	
7	III	Control the speed of DC motor using three phase half wave converter.	2	
8	III	Control the speed of DC motor using three phase semi converter.	2	
9	III	Control the speed of DC motor using three phase full converter.		
10	III	Control the speed of DC motor using three phase dual converter.	2	
11	IV	Test the performance of closed loop speed control of 3 phase induction motor using stator voltage control.	2	
12	IV	Test the performance of 3 phase induction motor V/f drive	2	
13	IV	Test the performance of vector control drive	2	
14	IV	Test the performance of field oriented control drive 2		
15	IV	Test the performance of 3- Ø induction motor using VSI drive. 2		
16	IV	Test the performance of cyclo converter fed induction Motor drive.	2	
17	V	Test the performance of a self-controlled synchronous motor drive employing load commutated thyristor inverter	2	
18	V	Test the performance of a self-controlled synchronous motor drive employing cycloconverter	2	
19	VI	Test the performance of stepper motor drive	2	
20	VI	Test the performance of BLDC motor drive	Test the performance of BLDC motor drive 2	
21	VI	Test the performance of switched reluctance motor drive	2	
22	VI	Test the performance of solar powered pump drive	2	
		Total	44	
Note:	Perform	any of the practical exercises from above list for a minimum of 28 hour	s depending	

Note: Perform any of the practical exercises from above list for a minimum of 28 hours depending upon the availability of resources so that skills matching with the most of the outcomes of every unit are included.

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare journals based on practical performed in laboratory.
- ii. Assignments on solving numerical problems
- iii. Visit websites of suppliers of electric drives and do a comparative study of different drives provided by different companies.
- iv. List various motor controlling parameters and find how they affect the performance of motor and drives.
- v. Find troubleshooting techniques and steps to troubleshoot DC drives.
- vi. Simulate various DC motor drives.
- vii. Analyze the specifications for various types of AC drives.
- viii. Find practical applications of AC drives in home appliances and list various Parameters of those applications.
- ix. Make comparative table for various drives based on its application and maximum power ratings.
- x. Check the performance of at least two different types of drives using simulation software like MATLAB.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Show video/animation film to demonstrate the working principles, constructional features, testing and maintenance of different types of DC motor drives.
- ii. Arrange expert lectures by engineers working in electric drive companies.
- iii. Arrange a visit to nearby manufacturer of electrical drives.
- iv. Use flash/animations to explain the working of different control devices.
- v. Give mini projects to students.

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1.	Fundamentals of Electrical Drives	Dubey, Gopal K.	Narosa Publishing House, New Delhi ,2 nd Edition
2.	Power Electronics	Bimbhra, P.S.	Khanna Publishers, New Delhi 5 th Edition
3.	Power Electronics	Singh M.D., Khanchandani K.B.	Tata McGraw-Hill Education New Delhi
4.	Variable Speed Drives and Power Electronics	Barnes, Malcolm	Newnes, Elsevier ,2003
5.	Power Electronics: Circuits, Devices and Applications	Muhammad, Rashid H.	Pearson, New Delhi, 2003,3 rd Edition or latest

B) Major Equipment/ Instrument with Broad Specifications

1.	Digital Multimeter:	4 ¹ / ₂ digit hand held 9 V batteries operated, DC Voltage: 0 to
	-	0.001 mV - 1000 V, AC Voltage: 0 to 0.01 mV - 1000 V, AC
		Current: 0 to 100 nA – 10 A, DC Current: 0 to 100 nA – 10 A,
2.	Digital Tachometer:	Hand held, battery operated, 5 digit display contact type, 60 to
		50000 r.p.m.,
3.	Four channel Digital	Bandwidth :200MHz, Power supply:230V ± 10% tolerance,50
	Oscilloscope:	Hz AC supply
4.	Various Trainer	i. 3 phase induction motor for V/f control
	boards for DC and	ii. Microcontroller based Slip ring induction motor speed
	AC Drives:	control using Static Kramer Drive
		iii. DC shunt motor speed control using 3 phase fully controlled
		converter
5.	Any one simulation	Scilab/Matlab and Simulink toolbox, CASPOC
	software (Open	
	source software	
	preferred) :	

C) Software/Learning Websites

- i. http://nptel.iitm.ac.in/video.php?subjectId=108108077
- ii. http://www.edumedia-sciences.com/en/a575-speed-controler-for-dc-motor

- iii. http://www.engineeringtv.com/video/Texas-Instruments-Brushless-DChttp://www.scribd.com/doc/6883802/AdjustableSpeedDrivesTutorial
- iv. SEQUEL (open source)
- v. PSIM
- vi. ORCAD

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. H I Joshi**, Lecturer in Electrical Engineering, Government Polytechnic, Ahmedabad
- **Prof. C T Patel**, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad
- **Prof. R D Panchal**, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad

Coordinator and Faculty Members from NITTTR Bhopal

- **Dr. (Mrs.) C.S. Rajeshwari**, Professor and Head, Department of Electrical and Electronics Engineering,
- Dr. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering,

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM COURSE TITLE: MAINTENANCE OF TRANSFORMER AND CIRCUIT BREAKER (COURSE CODE: 3360907)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Sixth

1. RATIONALE

Power system consists of a number of transformers, circuit breakers installed at substations including poll mounted distribution transformers whose numbers are in thousands only in Gujarat. These require regular maintenance to prevent permanent break down. Most of the industries and big commercial installations such as big institutes/hotels/complexes/hospitals that have their own substation also require maintenance of transformers and circuit breakers on regular basis. Most of the big cities are now establishing their own Metro railways. Indian Railways and city metros also have their own substations where transformer and circuit breakers are installed. Power companies also off load their maintenance work of distribution transformers and circuit breakers to private agencies. Thus there is huge demand for maintenance of transformers and circuit breakers.

Transformer and Circuit Breakers are one of the two electric equipment who operate at highest possible voltage i.e up to the level of 400 KV (generators and motors normally operate up to 33 KV Class). Moreover in transformers and circuit breakers current breaking and making takes place with full power (In transformer it happens in on load tap changer). Because of these conditions of very high voltage operations and breaking and making of full power current, insulating oil of transformers and circuit breakers is subjected to deterioration. Contacts of the circuit breaker are also subjected to deterioration due to formation of arcs. Because of these reasons these equipment require regular maintenance.

This course will enable the diploma pass out student to understand the concepts, principles and acquire basic skills of testing and maintenance of transformers and circuit breakers. There is a huge scope of self employment in this area with very less investment of capital.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Maintain transformers and circuit breakers.

3. COURSE OUTCOMES

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- i. Undertake /apply preventive maintenance
- ii. Maintain power and distribution transformers.
- iii. Commission different types of transformers
- iv. Maintain different types of circuit breakers

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme			Total		Examina	ation Scheme1			
(In Hours)		Credits (L+T+P)	Theory Marks		Practical Marks		Total Marks		
L	Т	Р	С	ESE	PA	ESE	PA		
3	0	2	5	70	30	20	30	150	

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, ESE -End Semester Examination; PA - Progressive Assessment

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in cognitive domain)	
Unit – I.	1a. State the types of maintenance.	1.1 Maintenance and its types -
Preventive	1b. Explain the significance of	Preventive and Breakdown
Maintenance	Preventive maintenance.	1.2 Advantages of preventive
	1c. Describe the economy of	maintenance
	maintenance.	1.3 Scope of preventive
		maintenance
		1.4 Economics of preventive
		maintenance
Unit– II	2a. Describe maintenance of	2.1 Significance of transformer
Maintenance of	different parts of power	maintenance
Transformers	transformer.	2.2 Parts of transformer- tank.
	2b.Explain the different factors	Core, winding, conservator,
	affecting the life of transformer.	radiators, bushings, terminals,
	2c. Prepare maintenance schedule	temperature measurement
	of different types of	system, safety valves, tap
	transformer.	changers and accessories/
	2d. Explain the importance of	fittings etc.
	quality of transformer oil.	2.3 Factors affecting the life of
	2e. Describe the transformer oil	transformer-moisture, water
	filtration procedure	oxygen, solid impurities,
	2f. List the parameters for quality	varnish, slackness of windings
	of oil.	and dust.
	2g.Describe Trouble shooting	2.4 Inspection-sensory, records and
	procedure of power transformer.	electrical test.
	2h.Inspect and maintain	2.5 General/Typical maintenance
	distribution and power	schedule of power
	transformer.	transformers-up to 1000 kVA
	2i. Describe the causes of failure of	and above 1000 kVA
	transformers	2.6 Maintenance of transformer oil-
	2j. Describe the methods to reduce	characteristic, interpretation of
	the noise level in transformer.	tests, procedure of testing BDV,
	2k.Describe how from analyses of	filtering plant.

Unit	Major Learning Outcomes	Tonics and Sub-tonics
	(in cognitive domain)	Topics and Sub-topics
	gas collected in Buchholz relay, condition of transformer may be ascertained. 21. State procedure for measuring of insulation resistance of transformers. 2m. Sate safety precautions to be absorbed during maintenance of transformers.	 2.7 Causes of failures of power transformers and preventive actions. 2.8 Detective devices-Buchholz relay, Pressure relief device, Differential relay, Dial thermometer alarm contact, Over current relay, ground fault relay, voltmeter, ammeter, Human senses 2.9 Check list of maintenance of power transformers 2.10 Causes and methods to reduce Audible Noise (AN) from transformer 2.11 Maintenance of distribution transformer i. Reasons for failure of Distribution Transformers and the remedial measures thereof ii. Inspection & Maintenance Schedule for Distribution Transformers: iii. Inspection & Maintenance of transformer and accessories within the sub-station and its proximity. 2.12 Procedure of measuring the
		insulation resistance of transformer windings
Unit– III Commissioning and Recharging of Transformers	 3a. Understand the procedure of commissioning of power transformer. 3b. Perform required test after commissioning of transformer. 3c. State do's and don'ts for power transformer. 3d. Describe the procedure of loading the transformer. 	 transformer windings. 3.1 Concept of commissioning and recharging of transformer. 3.2 General checks 3.3 Insulation resistance test 3.4 Measurement of oil characteristics 3.5 Off circuit tap switch 3.6 Continuity test 3.7 Measurement of winding resistance 3.8 Voltage ratio tests 3.9 Magnetizing current 3.10 Charging of the transformer 3.11 Do's and Don'ts for transformer 3.12 Various commissioning tests on a power transformers

Unit Major Learning Outcomes (in cognitive domain)		Topics and Sub-topics
		3.13 Procedure of loading the transformers.3.14 Transformer grounding.

insione

TI	Maior Looming Outcomes	Tanias and Sub tanias
Umt	(in cognitive domain)	Topics and Sub-topics
	(in cognitive domain)	
Unit IV	42 Describe the importance of	4.1 Steps in maintenance of CB
Unit-1V Maintanance of	the maintenance of circuit breaker	4.1 Steps in maintenance of CD
Cinquit Proglam	Ab Describe the procedure for the	4.2 Walnehance of moulded case
Circuit Dreaker	40. Describe the procedure for the	routing maintenance tests
	hranker	A 2 Maintananaa of low voltage
	Ac State the frequency of	circuit breakers. Frequency and
	maintenance and its procedure	maintenance procedures
	for various Voltage rating of	1 4 Maintenance of medium
	circuit breaker	voltage circuit breakers $-$ Air
	Ad Describe the Maintenance of	Oil and Vacuum circuit
	Oil Air Air blast SEc and	breakers - Frequency of
	Vacuum circuit breaker	maintenance safety practices
	4e State the causes of Failure of	and maintenance procedures for
	circuit breaker	each of the above
	4 Describe the trouble shooting	4 5 Maintenance of high-voltage
	procedure of circuit breaker	circuit breakers - frequency of
	4g. Explain the operating	inspections. External and
	mechanism of circuit breaker	internal inspection guidelines
	4h Describe the procedure for	typical internal breaker
	filling SF6 in Circuit Breaker	problems Influence of duty
	4 State the characteristics of SE6	imposed Types of tests
	Gas which makes it useful for	performed.
	CB.	4.6 OIL CB. Post fault
	4i. Describe factor effecting life of	maintenance. Steps in
	arcing contacts of CB.	maintenance of MOCB
	4k. List causes of failure of CB	4.7 Maintenance for AIR CB and
	41. Describe operating mechanism	Frequency of maintenance.
	of HVAC Circuit Breaker.	4.8 Maintenance of AIR BLAST
	4m. State safety precautions to	СВ
	be observed during maintenance	4.9 Maintenance of SF6 gas circuit
	of CBs.	breakers
		i. Properties of SF6 (sulphur
		hexafluoride) gas
		ii. Handling non faulted SF6
		iii. Handling faulted SF6
		iv. Procedure of filling SF6 gas
		in single pressure puffer type
		SF6 CB
		v. Gas monitoring system and
		gas handling system for SF6
		filled equipment
		vi. Types and function of SF6
		gas handling units.
		vii. Maintenance of SF6 CB
		4.10 Maintenance of VACCUM CB
		4.11 Life of arcing contacts in
		various CB in case of normal

Unit	Major Learning Outcomes (in cognitive domain)	Topics and Sub-topics
		 current switching and short circuit operation 4.12 Causes of failure of CB, trouble shooting and procedure of failure analysis. 4.13 Typical Record card for maintenance work of CB 4.14 Commissioning tests on HV A.C. CB 4.15 Operating mechanism used in HV A.C. CB 4.16 Safety precautions to be taken in maintenance of CB

6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (Theory)

Unit	Unit Title	Teaching	Distr	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
Ι	Preventive Maintenance	4 🔨	5	2	0	7	
II	Maintenance of Transformer	16	8	10	10	28	
III	Commissioning and Recharging of Transformers	8	6	4	4	14	
IV	Maintenance of Circuit Breaker	14	6	7	8	21	
	Total	42	25	23	22	70	

Legends: R = Remember U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED EXERCISES/PRACTICALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (outcomes in Psychomotor Domain)			
1	Ι	Prepare a technical report on the preventive maintenance of transformer which supplies electrical power to your college.	2		
2	Ι	Give comparison analysis between preventive and breakdown maintenance.	2		
3	II	II Prepare detail specifications data sheet for different transformer.(refer name plate mounted on transformers)			
4	II	Prepare a technical report on various accessories and fitments on a power transformer in a substation.	4		
5	II	Perform various tests applied to insulating oil.	4		
6	II	Prepare a technical report on various causes of troubles and failures of power transformer.	4		
7	7 II Prepare typical maintenance schedule for transformers up to 1000 KVA		4		
8	II Prepare typical maintenance schedule for transformers above 1000 KVA		4		
9	II Prepare a technical report on filtering process and filtering plant for transformer oil filtration.		2		
10	III	Prepare test report of a power transformer after commissioning.	4		
11	III	Read and interpret I.E. rules pertaining to testing of transformer.	4		
12	III	Perform insulation resistance test of transformer.	2		
13	III	Perform voltage ratio tests of three phase transformer.	2		
14	III	Read and interpret I.E. rules pertaining to commissioning of transformer.	4		
15	IV	Prepare detail specifications data sheet for different circuit breaker.(use name plate)	2		
16	IV	Prepare a technical report on various types of tests performed on high voltage ac circuit breakers.	4		
17	17 IV Prepare a technical report on maintenance of air blast circuit breaker.		4		
18	IV	Prepare a technical report on maintenance of SF ₆ circuit breaker.	2		
19	IV	Prepare a technical report on maintenance of Vacuum circuit breaker.			
20	IV	Prepare test report of tests on HVA.C. Circuit Breaker after commissioning.	2		
		Total Hours	62		
Note: Per	form any	of the practical exercises for a minimum of 28 hours from above list	depending		

Note: Perform any of the practical exercises for a minimum of 28 hours from above list depending upon the availability of resources so that skills related with the most of the outcomes in all the units are developed.

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities such as:

- i. Prepare journals based on practical performed in laboratory.
- ii. Prepare chart displaying various parts of transformer of different types etc.
- iii. List the names, specifications and make of the mountings/accessories used on nearby power transformer.
- iv. Prepare a report on various types of oil conservation systems and cooling systems used in power transformers.

- v. Survey the market for different type of transformer and circuit breaker oil available and compare their specifications with respect to effect of those parameters on life and functioning of equipment.
- vi. Prepare chart displaying various parts of circuit breaker of different types etc.
- vii. Visit nearby substation, transformer manufacturing & testing laboratories.
- viii. Visit maintenance site / workshop of transformer and circuit breaker.

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- (a) Show video/animation film to demonstrate maintenance procedures for transformer/circuit breakers.
- (b) Arrange a visit to nearby industry/substation to observe maintenance/installation/commissioning of transformer and circuit breakers.
- (c) Arrange expert lectures of the professional engineers involved in maintenance, installation, commissioning and testing of transformers and circuit breakers.
- (d) Give Mini projects to students

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
	Thesis on Self learning	Chouhan R.P.	TTTI Western Region,
	package on maintenance of	Gupta S.K.	Bhopal.
1.	33 KV class transformers		(NITTTR)
	for diploma course in		
	electrical engineering.		
	Testing Commissioning	Rao S	Khanna Publication (latest
2.	operation and maintenance		edition)
	of Electrical Equipments.		
3.	Transformers	BHEL	TATA McGraw-Hill
	Relavent IS Code for	-	Latest code
	Maintenance of		
4.	Transformer, circuit		
	breaker, switchgears,		
	insulating oil		

B) Major Equipment/ Instrument with Broad Specifications

1.	Oil testing kit.	Mains Supply : 230V AC $\pm 10\%$, 50Hz
		Single Phase Variac : 230V/ 0-270V
		High Voltage Source : 80kV, 20mA
		Voltmeter : 0 to 100kV
2.	Megger.	Insulation Testing:250V:500V:1000V:
		1000 M Ω range, Auto-ranging, Auto discharge
3.	Model of transformer.	Wooden, Plastic, etc material.
4.	Voltage ratio test kit.	For small 3 phase transformer
5.	Model of circuit breaker.	Wooden, Plastic, etc material.

C) List of Software/Learning Websites

- i. www.nptel.iitm.ac.in
- ii. www.youtube
- iii. www.howstuffworks.com
- iv. http://electrical-engineering-portal.com/

COURSE CURRICULUM DEVELOPMENT COMMITTEE 11. **Faculty Members from Polytechnics**

- Prof. H. C. Chawda, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad
- Prof. C. T. Patel, Lecturer in Electrical Engineering, RC Technical Institute, Ahmedabad.

Coordinator and Faculty Members from NITTTR Bhopal

- Prof. (Mrs.) C S Rajeshwari, Professor and Head Electrical and Electronics Engineering
- • Prof. Joshua Earnest, Professor, Department of Electrical and Electronics Engineering

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD

COURSE CURRICULUM COURSE TITLE: ELECTRIFICATION OF BUILDING COMPLEXES (COURSE CODE: 3360908)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Sixth

1. RATIONALE

With the revolutionary changes in the building construction, advent of new building materials and electrical fittings and accessories there is an increase in demand for specialists in electrification of high rise-multistoried building and commercial complexes. Therefore a limited exposure to electrification of small building is not sufficient and this subject needs to be taught as a specialized subject. This course will provide knowledge about electrification of high rise buildings and complexes. Studying this course will enable the diploma pass outs to plan, design, and estimate and execute the electrification of multistoried buildings and commercial complexes independently and professionally as per IE rules. If proper skills are developed then pass outs may start their own business of electrification of building complexes, which is very profitable and growing business and requires very less investment.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Applying IE rules, undertake the electrification of multistory buildings and commercial complexes.

3. COURSE OUTCOMES

The theory should be taught and practical should be undertaken in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domains to demonstrate the following course outcomes:

- i. Interpret plan and wiring diagrams of electrification of buildings and complexes.
- ii. Calculate the average and peak power requirement of building complexes.
- iii. Test a given wiring installation of a building and prepare test report.
- iv. Test wiring installation of a multistoried building and commercial complexes.
- v. Estimate the materials and cost of electrification for different buildings.
- vi. Test the safety devices in a multistoried building and commercial complexes.

Teaching Scheme		Scheme	Total Credits		Exa	amination Scheme			
(In Hours)		ırs)	(L+T+P)	Theory Marks		Practical Marks		Total Marks	
L	Т	Р	С	ESE	PA	ESE	PA	150	
3	0	2	5	70	30	20	30	150	

4. TEACHING AND EXAMINATION SCHEME

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, **ESE** - End Semester Examination; **PA** - Progressive Assessment.

5. COURSE CONTENT DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	* *
Unit – I.	1a. Interpret different electrical	1.1 of Electrical installation
Elements of	engineering drawings of an	1.2 Reading and Interpretation of
Electrification	electrical installation.	Electrical Engineering Drawings,
	1b.Measure and verify current,	diagrams, plans and layout
	earthing resistance, insulation	1.3 Testing of wiring Installation for
	resistance and continuity of a	verification of current, earthing
	wiring installation as per IS.	resistance, insulation resistance and
	1c. Describe the safety tests as per	continuity as per IS
	IS.	1.4 Preparation of testing/supervisory
	1d. Calculate illumination	report
	requirements.	1.5 Selection of electrical accessories
	-	such as main cable, main switches
		circuit breakers etc.
		1.6 Illumination requirements in high
		rise, Commercial and public
		Building
		1.7 Economical illumination design
Unit– II	2a. Prepare wiring layout of	2.1 Wiring layout of an electrical
Electrification	Electrical installation.	installation
of	2b. Calculate total load on	2.2 Type of wiring- Concealed /Surface
Multistoried	electrical distribution work.	conduit etc
Buildings	2c. Prepare specification of wiring	2.3 Calculate number of sub circuits
	material and accessories	from the total circuit requirement
	required for an electrical	2.4 Calculation total electrical load on
	installation. 📃 🔪	distribution work
	2d. Estimate floor wise electrical	2.5 Floor wise estimation of material
	material requirements.	requirements
		i. Specification of wiring material
		and accessories.
	\mathbf{C}	ii. Estimation of total cost of
•		electrification using schedule of
		rates (SOR).
		iii. Case Studies
		2.6 Requirements of approval from
(^`		electrical inspection for high rise-
		multistoried building
		2.7 Load calculation for lifts,
		escalators, air conditioners: wiring
	2. Interret Installation durations	diagram, Case studies(Problems)
Unit– III Electrification	3a. Interpret Installation drawing	3.1 Concept of commercial installation
Electrification	and layout of electrical wiring	5.2 Comparison of Residential and
01 Commonoial	2h Differentiete between	2.2 Eundemental considerations for
Complexes	all	s.s Fundamental considerations for planning of an electrical
and Public	and commercial Installation	installation system for
Buildings	3c. Calculate Load specification	commercial/Public building

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
	 for service connection and nature of supply. 3d. Calculate the correct size of cables, bus bar and bus bar chambers. 3e. Select appropriate mounting arrangements and positioning of switchboards, distribution boards, main switch, type of wire and wiring system. 3f. Estimate the cost of electrification of commercial installation. 	 3.4 Special requirements of hotels, theaters, library and cultural halls etc. from electrification points of view 3.5 Estimating and Costing of material and total cost of electrification of commercial complexes and Public buildings
Unit – IV Distribution System for Multistoried Buildings	 4a. Prepare drawing and layout for an underground service connection. 4b. Calculate Load specifications for an underground service connection of multistoried buildings. 4c. Calculate the size of bus bar, cables, panels, wiring system, type of wire 4d. Decide Mounting arrangements and positioning of switchboards, distribution boards main switch etc. 4e. Estimate the cost of multistoried buildings. 	 4.1 Different Methods of service connection 4.2 Incoming supply to substation for multistoried high rise buildings (building height more than 15m.) 4.3 Distribution panels and bus bar system 4.4 Meter connection-bifurcation of metering-meters as per consumers demand, use of digital – meters for prevention of theft of power 4.5 Cable laying in building, special precautions 4.6 Estimating and costing of electrification of underground service connection of multistoried building.
Unit – V Electrical Safety and IE Rules	 5a. Highlight the significance of safety rules to be followed in a Multistoried building. 5b. Conduct safety tests as per IE. 5c. Maintain various safety devices in multistoried buildings. 5d. Maintain Diesel Generator set as a stand by unit. 	 5.1 Importance of safety rules. 5.2 Safety precaution in electrical installation of multistoried buildings Fire alarm system Smoke detection system Safety for lifts and escalators Earthing system (IE rules regarding safety) Lightening arrestors arrangements Use of ELCB and MCB in an installation Electronic safety locks at the entrance

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	
		(electrical service) for safety
		5.4 Use of D.G. set as a standby power
		supply in case of emergency.
		5.5 IE rules related to Electrical
		Installation and Testing

6. SUGGESTED SPECIFICATION TABLE WITH HOURS and MARKS (THEORY)

Unit	Unit Title	Teaching Distribution of Theory Mar				Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Elements of Electrification	6	3	3	3	09
II	Electrification of Multistoried	10	5	6	6	17
	Buildings			1.0		
III	Electrification of Complexes and Public Buildings	10	5	6	6	17
IV	Distribution System for Multistoried Buildings.	10	5	6	6	17
V	Electrical Safety and I.E. rules	6	3	3	4	10
	Total	42	21	24	25	70

Legends: \mathbf{R} = Remember; \mathbf{U} = Understand; \mathbf{A} = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

7. SUGGESTED EXERCISES/PRACTICALS

The practical should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes in psychomotor domain are listed as practical. However, if these practical are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

S. No.	Unit No.	Practical Exercises (Outcomes in Psychomotor Domain)	Approx. Hrs. required	
1	II	Draw a complete wiring diagram, of any one of the commercial complexes. (Cinema, hotel, library, cultural hall, hospital etc. A group of 5 students, having one different complex –per group.	4	
2	III	Interpret and prepare electrical test report of a large building or complex.	2	
3	III	Calculate load, draw wiring diagram and estimate cost of any given high rise building.	4	
4	Ι	Design Economical illumination system for any complex, building.	4	
5	V	Testing of safety Devices in electrical installation in a high rise building.	4	
6	II	Calculate Load for lift, escalators, air conditioning in high rise building. (A group of 5 students, having one different complex per group.)	4	
7	V	Prepare field visit report (Important observations) of any high-rise building or Complex for electrical installation and wiring.	2	
8	I and V	Perform electrical tests for commercial and high rise buildings as per IE.	4	
Total Hours				

8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities:

- i. Prepare journals based on practical performed in laboratory.
- ii. Assignments on solving numerical
- iii. Assignments of case studies
- iv. Analyze the standard specifications of various electrical accessories and fittings.
- v. Make comparative table of different types of wiring installations.
- vi. Prepare a sample test report based on test carried out on an installation
- vii. Visit to see the electrification of large multistoried building or commercial building complex

9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- i. Arrange lectures by 'A' class contractors engaged in electrification works of building complexes.
- ii. Arrange a visit to a complex, multistory building under construction where electrification work is in progress.
- iii. Show video/animation film to demonstrate the different types of wiring and installations
- iv. Carry out a survey and prepare a report on different type of cables, their sizes and modern electrical accessories and fittings available in local market
- v. Use Flash/Animations to explain the working of different electrical safety devices.
- vi. Give Mini projects (such as planning and estimating of electrification of given building complex) to students.

10. SUGGESTED LEARNING RESOURCES

A) Books

S. No.	Title of Book	Author	Publication
1.	Electrical Design	Raina K.B.	Willet Estern Ltd., Latest edition
1.	Estimation and Costing	Bhattacharya S.K.	
2.	Electrical Estimation and	Uppal S.L.	Khanna Publisher, New Delhi,
	Costing		Latest edition
	India Electrical Rules	Chudley R.	Butterworth –London
3.	1956 Hand book		New Delhi. Latest Edition, Latest
			edition
	National Building code	Bureau of Indian	New Delhi, Book no. 1604, Latest
4.	of India Group 1 and	standard	Edition
	Group 4		
	A Course in Electrical	Gupta J.B.	S.K. Kataria and Sons, Latest
5.	Installation, Estimating		edition 👛 😐
	and Costing		47

B) Major Equipment/Instruments with Broad Specifications

- 1. Digital Multimeter
- 2. Clip-on meter
- 3. MEGGAR
- 4. EARTH TESTER
- 5. MULTIMETER
- 6. Basic wiring tools

Pliers, Screw drivers and nut drivers ,Wire strippers , Utility Knife, Fishing tools, Measuring devices, Labeling machines, Power drills and drivers, hammer/drills, Power saws

C) Software/Learning Websites

- i. www.nptel.iitm.ac.in
- ii. http://www.edumedia-sciences.com
- iii. www.youtube
- iv. http://electrical-engineering-portal.com/

11. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. V. R. Kotdawala, L.E.E, Government Polytechnic, Himmatnagar
- Prof. A. A. Amin, L.E.E, Government Polytechnic, Vadnagar

Coordinator and Faculty Members from NITTTR Bhopal

- Dr. (Mrs.) C.S. Rajeshwari, Professor, Department of Electrical and Electronics Engineering,
- **Prof. A. S. Walkey**, Associate Professor, Department of Electrical and Electronics Engineering,