GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Advance Mathematics (Group-1) (Code: 3320002)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical Engineering, Chemical Engineering, Electrical	
Engineering, Computer Engineering, Electronics &	C1 C
Communication Engineering, Information Technology,	Second Semester
Power Electronics	

1. RATIONALE

The course is classified under Advance Mathematics and students are intended to understand the advance concepts and principles of Mathematics such as calculus, complex numbers and differential equations. This knowledge is required to understand and solve engineering problems.

2. COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of mathematical skills so that students are able to acquire following competencies:

- Use proper Mathematical tool to understand engineering principles and concepts.
- Apply concepts of calculus or suitable mathematical tool to solve given engineering problems.

3. TEACHING AND EXAMINATION SCHEME

Teac	ching Sch	eme	Total		Exan	nination Sche	me					
-	(In Hours)		Credits (L+T+P)	Theory Marks		Theory Marks		Theory Marks		Practica	ıl Marks	Total Marks
L	Т	P	С	ESE	PA	ESE	PA					
2	2	0	4	70	30	0	0	100				

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. **DETAILED COURSE CONTENTS**

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I Complex Number	1a.Simplify Complex expressions 1b.Find Modulus and Amplitude of given expressions 1c.Use De Moivre's Theorem to simplify mathematical expressions and to find roots	Concept, Modules and Amplitude form, Root of Complex Number, De Moivre's Theorem. Apply concept of complex numbers in simple engineering problems.
Unit-II Function & Limit	2a .Solve the problems using functions 2b .Solve the problem of function using the concept of Limit	2.1 Function Concept and Examples 2.2 Limit Concept of Limit, Standard Formulae and related Examples.
Unit– III Differentiation & it's Applications	3a.Differentiate the various function 3b.Apply the differentiation to Velocity, Acceleration and Maxima & Minima	3.1Differentiation: Definition, Rules of, Sum, Product, Quotient of Functions, Chain Rule, Derivative of Implicit functions and Parametric functions, Logarithmic Differentiation. Successive Differentiation up to second order 3.2 Application: Velocity, Acceleration, Maxima & Minima.(simple problems)
Unit– IV Integration & its application	4a .Integrate the various function4b .Apply the Integration for finding Area and Volume	 4.1 Integration: Concept, Integral of Standard Functions, Working Rules of Integration, Integration by Parts, Integration by Substitution Method, Definite Integral and its properties. 4.2 Application: Area and Volume.(simple problems)
Unit-V Differential Equations(First Order First Degree)	1a.Find the Order and Degree of a Differential Equation. 1b. Form a Differential Equation for simple Engineering problems 1c. Solve Differential Equations using Variable Separable, Homogeneous and Integrating Factor methods.	 5.1 Definition, Order and Degree of Differential Equation 5.2 Formation of DE 5.3 Solution of DE of First Degree and First Order by Variable Separable, Homogeneous and Integrating Factor methods.

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title	Teaching Hours	Distribut	tion of T	heory Ma	rks
No.			R Level	U Level	A Level	Tot al
I	Complex Number	3	2	5	3	10
II	Function & Limit	4	3	5	4	12
III	Differentiation & its Application	8	4	8	6	18
IV	Integration & its Application	8	4	8	4	16
V	Differential Equations	5	2	8	4	14
Total		28	15	34	21	70

Legends: R = Remember; U= Understand; A= Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The exercises should be properly designed and implemented with an attempt to develop different types of mathematical skills so that students are able to acquire above mentioned competencies.

S. No.	Unit No.	Practical Exercises
1	I	Complex Number, Practice Examples
2		Use software for further understanding of applications
3	II	Practice Examples of Function & Limit
4		Use of Various Method/Techniques
5	III	Differentiation and Related Examples
6		Solve problems related to various methods/techniques of differentiations
7	9	Identify the Engineering Applications from respective branches and solve the problems
8	IV	Integration & Related Examples.
9		Solve problems Related to Various Methods/Techniques of integration
10		Identify the Engineering Applications from respective branches and solve the problems
11	V	Identify the corresponding Engineering Applications for differential equations from respective branches and solve the problems.

Note: The above Tutor sessions are for guideline only. The remaining Tutorial hours are may be used by teachers appropriately for revision and practice.

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like: course/topic based seminars, internet based assignments, teacher guided self learning activities, course/library/internet/lab based Mini-Projects etc. These could be individual or group-based. Some of these activities may be as below:

- 1. Applications to solve identified Engineering problems and use of Internet.
- 2. Learn graphical sofwares:EXCEL,DPLOT,GRAPH etc.
- 3. Learn MathCAD to use Mathematical Tools and solve the problems of Calculus.
- 4. Learn MATLAB and use it to solve the identified problems.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Author	Title of Books	Publication
1	Anthony croft and others	Engineering Mathematics (third edition)	Pearson Education,2012
2	Pandya N R	Advanced Mathematics for Polytechnic	Macmillan Publishers India Ltd.,2012
3	Deshpande S P	Polytechnic Mathematics	Pune Vidyarthi Gruh Prakashan,1984
4	Prakash D S	Polytechnic Mathematics	S Chand,1985

B. List of Major Equipment/Instrument

- 1. Simple Calculator
- 2. Computer System with Printer, Internet
- 3. LCD Projector

C. List of Software/Learning Websites

- 1. Excel
- 2. D Plot
- 3. Graph
- 4 MathCAD
- 5. MATLAB

You may use other Software like Mathematical and other Graph

Plotting software. Use websites such as wikipedia.org, mathworld.wolfram.com Etc...

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE:

Faculty Members from Polytechnics

- Dr. N. R. Pandya, HOD-General Dept., Govt. Polytechnic, Ahmedabad
- **Dr N A Dani**, Lecturer, Govt. Polytechnic, Junagadh.
- Prof. (Smt) R L Wadhwa, Lect Govt Polytechnic, Ahmedabad
- **Prof. H C Suthar**, BPTI,Bhavnagar
- **Prof. P N Joshi**, Govt Polytechnic, Rajkot

Coordinator and Faculty Member From NITTTR Bhopal

- Dr. P. K. Purohit, Associate Professor, Dept. of Science.
- Dr. Deepak Singh, Associate Professor, Dept. of Science.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Environment Conservation & Hazard Management (Code: 3300003)

Diploma Programmes in which this course is offered	Semester in which offered
Biomedical Engineering, Ceramic Engineering, Civil Engineering,	
Computer Engineering, Electrical Engineering, Environment	
Engineering, Fabrication Technology, Information Technology,	First Semester
Instrumentation & Control Engineering, Mechanical Engineering,	
Mining Engineering, Textile Design, Transportation Engineering	
Architecture Assistantship, Automobile Engineering, Chemical	
Engineering, Electronics & Communication, Mechatronics	,0
Engineering, Metallurgy Engineering, Plastic Engineering, Power	Second Semester
Electronics, Printing Technology, Textile Manufacturing, Textile	1-0
Processing	.9

1. RATIONALE

For a country to progress, sustainable development is one of the key factors. Environment conservation and hazard management is of much importance to every citizen of India. The country has suffered a lot due to various natural disasters. Considerable amount of energy is being wasted. Energy saved is energy produced. Environmental pollution is on the rise due to rampant industrial mismanagement and indiscipline. Renewable energy is one of the answers to the energy crisis and also to reduce environmental pollution. Therefore this course has been designed to develop a general awareness of these and related issues so that the every student will start acting as a responsible citizen to make the country and the world a better place to live in.

2. COMPETENCIES

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies.

i. Take care of issues related to environment conservation and disaster management while working as diploma engineer.

3. TEACHING AND EXAMINATION SCHEME

Total	eme	mination Sch	Examination				Teaching Scheme	
Marks	l Marks	Practica	Marks	Theory	(L+T+P))	In Hours	(
	PA	ESE	PA	ESE	C	P	Т	L
100	0	0	30	70	4	0	0	4

 $\begin{array}{lll} \textbf{Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P-Practical; C-Credit;} \\ \textbf{ESE} - End Semester Examination; PA-Progressive Assessment.} \end{array}$

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1.1 Enhance knowledge about	1.1 Importance of environment and scope
Ecology and	engineering aspects of	1.2 Engineering and environment issues
environment	Environment	1.3 The natural system, Biotic and a-Biotic
	1.2 Correlate the facts of ecology	components and processes of natural system
	and environment A	1.4 Eco system, food chain and webs and other
	1.3 assess the effect of pollution	biological Systems,
	1.4 List the causes of environmental	1.5 Causes of environmental pollution
	pollution	1.6 Pollution due to solid waste
	1.5 State the major causes of air, water and noise pollution	1.7 water pollution, air pollution, the Noise as pollution,
	1.6 Describe how industrial waste	1.8 Pollution of land due to industrial and chemical
	contaminates the land	waste
	1.7 Describe the effects of radiation	1.9 Radiation and its effects on vegetables and
	on vegetables, animals	animals
Unit- II	2.1 Explain the concept of	2.1 Concept of sustainable development,
Sustainable	sustainable development	2.2 Natural resources, a-biotic and biotic resources
Development	2.2 Justify the need for renewable	2.3 Principles of conservation of energy and
	energy	management
	2.3 Describe the growth of	2.4 Need of Renewable energy
	renewable energy in India	2.5 Growth of renewable energy in India and the
	2.4 Explain the concepts of waste	
	management and methods of	2.6 Concept of waste management and recyling
	recyling	•
Unit – III	3.1 Describe the growth of wind	3.1 Growth of wind power in India
Wind Power	power in India	3.2 Types of wind turbines – Vertical axis wind
771111111111111111111111111111111111111	3.2 State the differences between	turbines (VAWT) and horizontal axis wind
	VAWTs and HAWTs	turbines (HAWT)
	3.3 Explain the differences between	3.3 Types of HAWTs – drag and lift types
	drag and lift type wind turbines	3.4 Working of large wind turbines
	3.4 Describe the working of large	3.5 Aerodynamic control of large and small wind
	wind turbines	turbines
	3.5 List the types of aerodynamic	3.6 Types of electrical generators used in small
	control of large wind turbines	and large wind turbines
	3.6 Name the generators used in large wind turbines	
Unit – IV	4.1 Describe the salient features of	4.1 Features of solar thermal and PV systems
Solar Power	solar thermal and PV systems	4.2 Types of solar cookers and solar water heaters
	4.2 Describe a solar cooker and	4.3 Solar PV systems and its components and their
	solar water heater	working
	4.3 Describe the working of solar	4.4 Types of solar PV cells
	PV system	4.5 Solar PV and solar water heaters, rating and costing
	4.4 State the salient features of	
	polycrystalline,	
	monocrystalline and thin film	
IImit V	PV systems	5.1. Types of Diomaga Engrey Courses
Unit – V Biomass	5.1 State the different types of biomass energy sources	5.1 Types of Biomass Energy Sources5.2 Energy content in biomass of different types
energy	5.2 Describe about the energy	5.3 Types of Biomass conversion processes
chergy	content in biomass	5.4 Biogas production
	5.3 Describe the working of simple	Diogus production
	biogas plant	

CourseCode: 3300003

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit		Distribution of Theory Marks				
No.	Unit Title	Hours	R	U	A	Total
			Level	Level 4	Level	Marks
1.	Ecology and Environment	8	4	4	0	8
2.	Sustainable Development	10	4	5	1	10
3.	Wind Power	10	4	6	4	14
4.	Solar Power	10	4	6	4	14
5.	Biomass energy	8	4	4	2	10
6.	Seismic Engineering and disaster	10	6	6	2	14
	Total	56	26	31	13	70

Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxomonoy

6. SUGGESTED LIST OF EXPERIMENTS/PRACTICAL EXERCISES

Nil

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Prepare paper on various sustainable development
- ii. Make a report after gathering information the values of water, noise pollution and air pollution in your city/town and compare the values in other cities and towns in India with respect to environmentally acceptable levels
- iii. Prepare a paper on air and water pollution in an industry/institute
- iv. Undertake some small mini projects in any one of the renewable energies
- v. Visit an energy park and submit project on various sources of energy
- vi. Prepare powerpoint on clean and green technologies
- vii. Prepare a list of do's and don'ts applicable during disasters
- viii. Submit a report on garbage disposal system in your city/town.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S. No.	Title of Book	Author	Publication/Year
1	Renewable Energy	Solanki, Chetan Singh	PHI Learning, New Delhi, 2010
	Technologies		
2	Ecology and Control of the	Izrael, Y.A.	Kluwer Academic Publisher
	Natural Environment		
3	Environment Engineering and	Sharma, Sanjay K.	Luxmi Publications, New Delhi
	Disaster Management		
4	Environmental Noise Pollution	Chhatwal,G.R.; Katyal,T.;	Anmol Publications, New Delhi
	and Its Control	Katyal,	
5	Wind Power Plants and Project	Earnest, Joshua & Wizelius,	PHI Learning, New Delhi, 2011
	Development	Tore	
6	Renewable Energy Sources	Kothari, D.P. Singal, K.C.,	PHI Learning, New Delhi, 2009
	and Emerging Technologies	Ranjan, Rakesh	
7	Environmental Studies	Anandita Basak	Pearson
8	Environmental Science and	Alka Debi	University Press
	Engineering		
9	Coping With Natural Hazards,	K. S. Valadia	Orient Longman
	Indian Context		
10	Engineering and Environment	Edward S. Rubin	Mc Graw Hill Publ.

B. List of Major Equipment/Instrument

- i. Digital sound level meters (to check noise pollution)
- ii. Digital air quality meter (to measure air pollution)
- iii. Digital handheld anemometer (to measure wind speeds)
- iv. Digital hand held pyranometer (to measure solar radiation levels)

C. List of Software/Learning Websites

- i. http://www1.eere.energy.gov/wind/wind_animation.html
- ii. http://www.nrel.gov/learning/re_solar.html
- iii. http://www.nrel.gov/learning/re_biomass.html
- iv. http://www.mnre.gov.in/schemes/grid-connected/solar-thermal-2/
- v. http://www.mnre.gov.in/schemes/grid-connected/biomass-powercogen/

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. H.L.Purohit, HOD, Civil Engg. Dept. L.E.College. Morbi
- Shri. P.A.Pandya, LCE, Civil Engg. Dept, G.P, Himatnagar

Co-ordinator and Faculty Members from NITTTR Bhopal

- Dr. J.P.Tegar, Professor Dept of Civil and Environmental Engg, NITTTR, Bhopal.
- **Dr. Joshua Earnest,** Professor and Head, Dept. of Electrical & Electronics Engg, NITTTR, Bhopal

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: Electronic Circuits and Applications (Code: 3321101)

Diploma Programme in which this course is offered	Semester in which offered
Electronic and Communication Engineering	Second Semester

1. RATIONALE

This course will enable students to develop the skills required to use basic electronic devices in various electronic circuits. Through the study of this course the students will understand the construction, working, characteristics and applications of various types of semiconductor components such as diodes and transistors, which are basic building block of amplifier, oscillator, switching circuit, wave shaping circuit and power supply. The knowledge of this core subject is essential for comprehending the courses that will be introduced later in the diploma programme as well as developing requisite skills for effective functioning in the industry.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competency:

Analyse analog circuits consisting of active electronic components.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits (L+T+P)		Examination Scheme						
(III Hours)		(21111)	Theory Marks		Practical Marks		Total Marks	
L	T	P	С	ESE	PA	ESE	PA	200
4	0	4	8	70	30	40	60	

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for **PA of theory** & **ESE and PA of practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. **DETAILED COURSE CONTENT**

Unit	Major Learning	Topics and Sub-topics		
Unit – I	Outcomes	1.1 Basic diode circuits, clipper and clamper, voltage		
Unit – 1	1a. Explain working of clipper and clamper.	doubler		
Diode	1b. Describe working,	1.2 Zener diode as a voltage regulator		
Application	characteristic and	1.3 Varactor diode, schottky barrier diode, crystal		
and Special	applications of	diode		
Purpose	different diodes.			
Diodes	1c. Explain the working	1.4 Photo Diode, LDR, Photovoltaic Cell, Photo		
	and applications of	Transistor, Light Emitting Diode, Opto coupler, 7-		
	photo devices.	Segment Display, OLED, AMOLED, Multi color		
		LED		
Unit – II	2a Compara working of	2.1 Transistor Amplifier: CB, CE, CC		
Unit – II	2a. Compare working of CB, CE and CC	2.2 Comparison of CB,CE and CC Amplifier		
Transistor	amplifier.	2.2 Comparison of CB,CE and CC Ampirite		
Amplifier	2b. Calculate parameters	2.3 Load line consideration and operating		
and	of CB, CE, CC	point		
Applications	transistor amplifier.	2.4 Amplifier Parameters: A _v , A _i , A _p , R _o , R _i		
	2c. Explain the need for	2.5 Darlington Pair and its applications		
	Darlington Pair.			
	2d. Describe application of	2.6 Transistor used as a Relay Driver		
	transistor as a Relay			
	Driver and Tuned	2.7 Transistor used as a Tuned Amplifier		
	Amplifier.			
Unit – III	3a. Test different biasing	3.1 Biasing; Biasing Circuits: Fixed Bias,		
	circuits.	Collector to Base bias, Emitter Bias		
Transistor	3b. Define thermal	and Voltage divider bias		
Biasing	instability and its	3.2 Thermal instability		
Circuits and	adverse effect on			
Thermal	working of any			
Stability	circuit.			
	3c. Justify the need of heat	3.3 Thermal Runaway and Stability Factor		
	sink. 3d. Select appropriate heat	3.4 Thermal Resistance 3.5 Heat Sink		
	sink.	3.6 Types of Heat sink: Shape, Size, Color,		
	SHIK	Material		
	3			
Unit – IV	4a. Define amplifier	4.1Gain, Bandwidth and Gain-Bandwidth		
1.7	parameters: gain,	product		
Frequency	Bandwidth and Gain –	4.2 Effect of Emitter Bypass Capacitor and		
Response of	bandwidth product .	Coupling Capacitor on frequency		
Transistor Amplifier	4b.Determine frequency response of CE	response 4.3 Frequency Response of Single Stage		
Ampiniei	amplifier using	Amplifier Amplifier		
	different types of	4.4 Different Coupling Techniques for cascading:		
	coupling.	Direct, RC, LC and Transformer		
	4c. Describe the various	4.5 Frequency Response of Two Stage RC-		
	types of couplings of	Coupled amplifier		
	amplifier.			
Unit – V	5a.Describe importance of	5.1 Two port network ,h-parameters and its equivalent		

	Major Learning	Topics and Sub-topics
Unit	Outcomes	Topics and sub-topics
	h- parameters of the two	circuits
Hybrid	port network.	5.2 h-parameters for CE amplifier
Parameters	5b. Analyse CE amplifier	5.3 CE Amplifier parameters- A _v , A _i , A _p , R _o , R _i using
	using h-parameters.	h- parameters (No Derivations)
Unit – VI	6a. Explain parameters of	6.1 Regulated power supply (module level)
	the regulator and the	6.2 Shunt voltage regulator
Regulated	need of regulated DC	(module level)
Power	power supply.	6.3 Transistorized series voltage regulator
Supply	6b. Explain the working of	(basic and with feedback, without derivation)
	different voltage	6.4 Three Terminal Fixed/variable voltage regulator:
	regulator	78xx, 79xx, LM317
	circuits.	
	6c. Explain need, working	6.5 Switch mode power supply(SMPS)
	at module level,	6.6 Uninterruptible power supply(UPS)
	advantage,	
	disadvantages and	1.0
	applications of SMPS.	469
	6d. Compare LRPS and	
	SMPS.	03
	6e. Explain working of	
	UPS at module level	
	for offline and online.	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit	Unit Title		Distr	ribution of [Theory Ma	rks
		Teaching	R	U	A	Total
		Hours	Level	Level	Level	Marks
I	Diode application and	10	2	6	6	14
	special purpose diodes					
II	Transistor biasing circuits	10	2	6	4	12
	and thermal Stability					
III	Transistor amplifier	10	4	6	4	14
IV	Frequency response of	10	4	6	2	12
	transistor amplifier					
V	Hybrid parameters	6	2	2	2	6
VI	Regulated power supply	10	2	4	6	12
Tot	al	56	16	30	24	70

Legends:R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The experiments should be properly designed and implemented with an attempt to develop different types of skills leading to achieve the competency. Following is the list of experiments for guidance.

No. No. No. Requires	S.	Unit	Practical/Exercise	Apprx. Hrs.
passive component like resistor and capacitor and testing of diode, transistor. 2	No.	No.		Required
diode, transistor. 2 I Determine voltage and frequency of sine, square and triangular wave signal using CRO. 3 I Build various types of clipper circuit and observe input —output waveforms. Design a diode clipper circuit for the given value of clipping voltage. 4 I Build various types of clamper circuit and observe input — output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 9 I Build and display alphanumeric character using single/multi ocloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode-Both) 1 II Test thermal stability of fixed biased type amplifier. 10 I Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Build amplifier using Darlington pair and calculate gain of CE amplifier circuit. 1 III Build amplifier using Darlington pair and calculate tis gain. 1 V Calculate h-parameters of given transistor using data sheet. 1 V Calculate ine regulation of SMPS. 2 VI Build voltage for the given voltage regulator. 2 VI Build voltage for the given voltage regulator. 2 VI Build voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 0 0 20	1	I		02
2 I Determine voltage and frequency of sine, square and triangular wave signal using CRO. 3 I Build various types of clipper circuit and observe input —output waveforms. Design a diode clipper circuit for the given value of clipping voltage. 4 I Build various types of clamper circuit and observe input — output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of photo diode. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 1 II Test thermal stability of fixed biased type amplifier. 10 I Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Build amplifier using Darlington pair and calculate gain of CE amplifier circuit. 1 III Build amplifier using Darlington pair and calculate tis gain. 1 V Obtain frequency response of single stage transistor amplifier. 1 V Calculate h-parameters of given transistor using data sheet. 1 V Calculate ine regulation of SMPS. 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic				
wave signal using CRO. 3 I Build various types of clipper circuit and observe input –output waveforms. Design a diode clipper circuit for the given value of clipping voltage. 4 I Build various types of clamper circuit and observe input – output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 02 obtain the V-I Characteristic of zener diode. 02 voltage using zener diode. 03 obtain the V-I Characteristic of photo diode. 04 Obtain V-I characteristic of photo diode. 05 I Obtain the V-I Characteristic of LDR. 06 I Design voltage regulator for the given value of regulated voltage using zener diode. 07 I Obtain V-I characteristic of LDR. 08 I Obtain the V-I Characteristic of LDR. 09 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED 11 I Display numbers using 7 segment LED 12 (Common Anode and Common Cathode- Both) 13 II Test thermal stability of fixed biased type amplifier. 14 III Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 14 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 15 III Obtain input and output characteristics and calculate gain. 16 Obtain frequency response of single stage transistor amplifier. 17 Obtain frequency response of two stage RC-coupled amplifier. 18 IV Obtain frequency response of two stage RC-coupled amplifier. 19 Obtain frequency response of two stage RC-coupled amplifier. 20 IV Calculate h-parameters of given transistor using data sheet. 21 VI Calculate line regulation of SMPS. 22 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 23 VI Build voltage regulator using 1 UPS (Online/Offline). 24 VI Demonstration of working of UPS (Online/Offline). 25 All Build and test o		_		
waveforms. Design a diode clipper circuit for the given value of clipping voltage. 4 I Build various types of clamper circuit and observe input — output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 02 obtain voltage regulator for the given value of regulated voltage using zener diode. 02 voltage using zener diode. 03 obtain the V-I Characteristic of photo diode. 04 obtain the V-I Characteristic of LDR. 05 obtain the V-I Characteristic of LDR. 06 obtain the V-I Characteristic of LDR. 07 obtain the V-I Characteristic of LDR. 08 obtain the V-I Characteristic of LDR. 09 obtain the V-I Characteristic of LDR. 00 obtain the V-I Characteristic of LDR. 01 obtain the V-I Characteristic of LDR. 02 obtain the V-I Characteristic of LDR. 03 obtain the V-I Characteristic of LDR. 04 obtain the V-I Characteristic of LDR. 05 obtain the V-I Characteristic of LDR. 06 obtain the V-I Characteristic of LDR. 07 obtain the V-I Characteristic of LDR. 08 obtain the V-I Characteristic of LDR. 09 obtain the V-I Characteristic of LDR. 00 obtain the V-I Characteristic of LDR. 00 obtain the V-I Characteristic of LDR. 01 obtain the V-I Characteristic of LDR. 02 obtain the V-I Characteristic of LDR. 03 obtain the V-I Characteristic of LDR. 04 obtain the V-I Characteristic of LDR. 05 obtain the V-I Characteristic of LDR. 06 obtain the V-I Characteristic of LDR. 07 obtain the V-I Characteristic of LDR. 08 obtain the V-I Characteristic of LDR. 09 obtain the V-I Characteristic of LDR. 00 obtain the V-I Characteristic of LDR. 01 obtain the V-I Characteristic of LDR. 02 obtain the V-I Characteristic of LDR. 03 obtain the V-I Characteristic of LDR. 04 obtain the V-I Characteristic of LDR. 05 obtain the V-I Characteristic of LDR. 06 obtain the V-I Characteristic of LDR. 07 obtain the V-I Characteristic of LDR. 08 obtain the V-I Characteristic of LDR. 09 obtain the V-I Characteristic of LDR. 00 obtain the V-I Characteristic of LDR. 00 obtain the V-I Characteristic		I	wave signal using CRO.	02
Design a diode clipper circuit for the given value of clipping voltage. 4 I Build various types of clamper circuit and observe input — output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 11 II Test thermal stability of fixed biased type amplifier. 12 III Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Build amplifier circuit. 13 III Build amplifier using Darlington pair and calculate gain of CE amplifier circuit. 14 III Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 IV Obtain frequency response of two stage RC-coupled amplifier. 17 V Calculate h-parameters of given transistor using data sheet. 18 V Calculate ine regulation of SMPS. 20 VI Build voltage for the given voltage regulator. 21 VI Build and test one mini project using basic electronic 22 VI Build and test one mini project using basic electronic	3	I		02
voltage. 4 I Build various types of clamper circuit and observe input — output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 1 II Test thermal stability of fixed biased type amplifier. 11 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 11 III Build amplifier using Darlington pair and calculate gain of CB amplifier circuit. 12 III Build amplifier vising Darlington pair and calculate gain of C2 CB amplifier circuit. 13 IV Obtain frequency response of two stage RC-coupled amplifier. 14 IV Obtain frequency response of two stage RC-coupled amplifier. 15 V Calculate h-parameters of given transistor using data sheet. 16 V Calculate ine regulation of SMPS. 27 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 28 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 29 VI Demonstration of working of UPS (Online/Offline). 20 Valud and test one mini project using basic electronic				
4 I Build various types of clamper circuit and observe input— output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi 02 coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 11 II Test thermal stability of fixed biased type amplifier. 12 III Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 14 IV Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 IV Calculate h-parameters of given transistor using data sheet. 17 V Calculate ine regulation of SMPS. 18 Usild voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 VI Demonstration of working of UPS (Online/Offline). 2 VI Demonstration of working of UPS (Online/Offline).				
output waveforms. Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain the V-I Characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 11 II Test thermal stability of fixed biased type amplifier. 12 III Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CB amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 14 IV Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 IV Calculate h-parameters of given transistor using data sheet. 17 VI Calculate line regulation of SMPS. 28 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 29 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 20 VI Demonstration of working of UPS (Online/Offline). 21 All Build and test one mini project using basic electronic	4	т		02
Design a diode clamping circuit for the given value of clamping voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 1 II Test thermal stability of fixed biased type amplifier. 1 III Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Obtain input and output characteristics and calculate gain of CB amplifier circuit. 1 III Build amplifier using Darlington pair and calculate its gain. 1 IV Obtain frequency response of single stage transistor amplifier. 1 V Calculate h-parameters of given transistor using data sheet. 1 VI Calculate line regulation of SMPS. 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic	4	1		02
voltage. 5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 1 II Test thermal stability of fixed biased type amplifier. 11 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 14 IV Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 IV Obtain frequency response of two stage RC-coupled amplifier. 17 V Calculate h-parameters of given transistor using data sheet. 18 V Calculate line regulation of SMPS. 20 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 21 VI Demonstration of working of UPS (Online/Offline). 22 VI Demonstration of working of UPS (Online/Offline). 23 VI Demonstration of working of UPS (Online/Offline).			•	
5 I Obtain the V-I Characteristic of zener diode. 6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 11 II Test thermal stability of fixed biased type amplifier. 12 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 14 IV Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 V Calculate h-parameters of given transistor using data sheet. 17 VI Calculate line regulation of SMPS. 20 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 21 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 22 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 23 VI Demonstration of working of UPS (Online/Offline). 24 OL Demonstration of working of UPS (Online/Offline).				
6 I Design voltage regulator for the given value of regulated voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 1 II Test thermal stability of fixed biased type amplifier. 1 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Build amplifier using Darlington pair and calculate its gain. 1 IV Obtain frequency response of single stage transistor amplifier. 1 IV Obtain frequency response of two stage RC-coupled amplifier. 1 IV Obtain frequency response of two stage RC-coupled amplifier. 1 V Calculate h-parameters of given transistor using data sheet. 1 VI Calculate line regulation of SMPS. 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 VI Demonstration of working of UPS (Online/Offline).	5	I		02
voltage using zener diode. 7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 1 II Test thermal stability of fixed biased type amplifier. 1 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Build amplifier using Darlington pair and calculate its gain. 1 IV Obtain frequency response of single stage transistor amplifier. 1 V Calculate h-parameters of given transistor using data sheet. 1 VI Calculate line regulation of SMPS. 2 VI Build voltage regulator using Pax and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic				
7 I Obtain V-I characteristic of photo diode. 8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 11 II Test thermal stability of fixed biased type amplifier. 12 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 14 III Build amplifier using Darlington pair and calculate its gain. 15 IV Obtain frequency response of single stage transistor amplifier. 16 IV Obtain frequency response of two stage RC-coupled amplifier. 17 IV Obtain frequency response of two stage RC-coupled amplifier. 18 V Calculate h-parameters of given transistor using data sheet. 19 VI Calculate line regulation of SMPS. 20 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 21 VI Demonstration of working of UPS (Online/Offline). 22 VI Demonstration of working of UPS (Online/Offline). 23 All Build and test one mini project using basic electronic		-		02
8 I Obtain the V-I Characteristic of LDR. 9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 11 II Test thermal stability of fixed biased type amplifier. 12 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 14 IV Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 V Calculate h-parameters of given transistor using data sheet. 17 VI Calculate line regulation of SMPS. 18 VI Calculate line regulation of SMPS. 20 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 21 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 22 VI Demonstration of working of UPS (Online/Offline). 23 All Build and test one mini project using basic electronic	7	I		02
9 I Build and display alphanumeric character using single/multi coloured LED. 10 I Display numbers using 7 segment LED (Common Anode and Common Cathode- Both) 11 II Test thermal stability of fixed biased type amplifier. 12 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 14 IV Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 VI Calculate h-parameters of given transistor using data sheet. 17 VI Calculate line regulation of SMPS. 20 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 21 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 22 VI Demonstration of working of UPS (Online/Offline). 23 All Build and test one mini project using basic electronic	8	I		02
coloured LED. 10				
(Common Anode and Common Cathode- Both) 1 II Test thermal stability of fixed biased type amplifier. 02 11 III Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 02 14 IV Obtain frequency response of single stage transistor amplifier. 02 15 IV Obtain frequency response of two stage RC-coupled amplifier. 02 16 IV Calculate h-parameters of given transistor using data sheet. 02 17 VI Calculate line regulation of SMPS. 02 28 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 29 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 02 20 VI Demonstration of working of UPS (Online/Offline). 02 21 All Build and test one mini project using basic electronic 02				
1 II Test thermal stability of fixed biased type amplifier. 02 11 II Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 11 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 12 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 13 III Build amplifier using Darlington pair and calculate its gain. 14 IV Obtain frequency response of single stage transistor amplifier. 15 IV Obtain frequency response of two stage RC-coupled amplifier. 16 V Calculate h-parameters of given transistor using data sheet. 17 VI Calculate line regulation of SMPS. 28 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 29 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 20 VI Demonstration of working of UPS (Online/Offline). 21 VI Demonstration of working of UPS (Online/Offline). 22 VI Demonstration of mini project using basic electronic	10	I	Display numbers using 7 segment LED	02
1 III Build and test voltage divider biased type amplifier and measure voltage at different points on the circuit and observe waveforms. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1 III Build amplifier using Darlington pair and calculate its gain. 1 IV Obtain frequency response of single stage transistor amplifier. 1 IV Obtain frequency response of two stage RC-coupled amplifier. 1 V Calculate h-parameters of given transistor using data sheet. 1 VI Calculate line regulation of SMPS. 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic			(Common Anode and Common Cathode- Both)	
measure voltage at different points on the circuit and observe waveforms. 1. III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1. III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1. III Build amplifier using Darlington pair and calculate its gain. 1. IV Obtain frequency response of single stage transistor amplifier. 1. IV Obtain frequency response of two stage RC-coupled amplifier. 1. V Calculate h-parameters of given transistor using data sheet. 1. V Calculate line regulation of SMPS. 2. VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2. VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2. VI Demonstration of working of UPS (Online/Offline). 2. VI Demonstration of working of UPS (Online/Offline). 2. All Build and test one mini project using basic electronic	1	II	Test thermal stability of fixed biased type amplifier.	02
waveforms. III Obtain input and output characteristics and calculate gain of CE amplifier circuit. III Obtain input and output characteristics and calculate gain of CE amplifier circuit. III Build amplifier using Darlington pair and calculate its gain. Obtain frequency response of single stage transistor amplifier. IV Obtain frequency response of two stage RC-coupled amplifier. V Calculate h-parameters of given transistor using data sheet. VI Calculate line regulation of SMPS. O2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. VI Demonstration of working of UPS (Online/Offline). O2 All Build and test one mini project using basic electronic	12	II	Build and test voltage divider biased type amplifier and	02
1. III Obtain input and output characteristics and calculate gain of CE amplifier circuit. 1. III Obtain input and output characteristics and calculate gain of CB amplifier circuit. 1. III Build amplifier using Darlington pair and calculate its gain. 1. IV Obtain frequency response of single stage transistor amplifier. 1. IV Obtain frequency response of two stage RC-coupled amplifier. 1. V Calculate h-parameters of given transistor using data sheet. 1. VI Calculate line regulation of SMPS. 2. VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2. VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2. VI Demonstration of working of UPS (Online/Offline). 2. VI Demonstration of working of UPS (Online/Offline). 2. All Build and test one mini project using basic electronic				
amplifier circuit. 1 III Obtain input and output characteristics and calculate gain of CB amplifier circuit. 1 III Build amplifier using Darlington pair and calculate its gain. 1 IV Obtain frequency response of single stage transistor amplifier. 1 IV Obtain frequency response of two stage RC-coupled amplifier. 1 V Calculate h-parameters of given transistor using data sheet. 2 VI Calculate line regulation of SMPS. 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic				
14 III Obtain input and output characteristics and calculate gain of CB amplifier circuit. 1 III Build amplifier using Darlington pair and calculate its gain. 1 IV Obtain frequency response of single stage transistor amplifier. 1 IV Obtain frequency response of two stage RC-coupled amplifier. 1 V Calculate h-parameters of given transistor using data sheet. 1 VI Calculate line regulation of SMPS. 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic	13	III		02
CB amplifier circuit. 1: III Build amplifier using Darlington pair and calculate its gain. 1: IV Obtain frequency response of single stage transistor amplifier. 1: IV Obtain frequency response of two stage RC-coupled amplifier. 1: V Calculate h-parameters of given transistor using data sheet. 1: VI Calculate line regulation of SMPS. 2: VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2: VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2: VI Demonstration of working of UPS (Online/Offline). 2: All Build and test one mini project using basic electronic			*	
1: III Build amplifier using Darlington pair and calculate its gain. 10 IV Obtain frequency response of single stage transistor amplifier. 11 IV Obtain frequency response of two stage RC-coupled amplifier. 12 V Calculate h-parameters of given transistor using data sheet. 13 VI Calculate line regulation of SMPS. 24 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 25 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 26 VI Demonstration of working of UPS (Online/Offline). 27 VI Build and test one mini project using basic electronic	14	III		02
1 IV Obtain frequency response of single stage transistor amplifier. 02 1 IV Obtain frequency response of two stage RC-coupled amplifier. 02 1 V Calculate h-parameters of given transistor using data sheet. 02 1 VI Calculate line regulation of SMPS. 02 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 02 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 02 2 VI Demonstration of working of UPS (Online/Offline). 02 2 All Build and test one mini project using basic electronic 02		-		0.0
1 IV Obtain frequency response of two stage RC-coupled amplifier. 02 1 V Calculate h-parameters of given transistor using data sheet. 02 1 VI Calculate line regulation of SMPS. 02 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 02 2 All Build and test one mini project using basic electronic 02				
V Calculate h-parameters of given transistor using data sheet. 1 VI Calculate line regulation of SMPS. 2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic 02				
19 VI Calculate line regulation of SMPS. 20 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 21 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 22 VI Demonstration of working of UPS (Online/Offline). 23 VI Build and test one mini project using basic electronic 24 O2				
2 VI Build voltage regulator using 78xx and 79xx and measure the dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic 02	_			
dropout voltage for the given voltage regulator. 2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic 02				
2 VI Build variable voltage regulator using LM317 and measure the dropout voltage for the given voltage regulator. 2 VI Demonstration of working of UPS (Online/Offline). 2 All Build and test one mini project using basic electronic 02	20	VI		02
dropout voltage for the given voltage regulator. 2. VI Demonstration of working of UPS (Online/Offline). 2. All Build and test one mini project using basic electronic 02	2	7.71		02
2. VI Demonstration of working of UPS (Online/Offline). 02 2. All Build and test one mini project using basic electronic 02	۷.	V I		02
2. All Build and test one mini project using basic electronic 02	21	7/1		02
TOTAL COMPONENTS AND SCHOOL PULL POSCI CD.	۷.	AII		02
Total 46				46

7. SUGGESTED LIST OF STUDENT ACTIVITIES

Following is the list of proposed student activities like:

- Build circuit/mini project using electronic components.
- PPT Presentation/Seminar on syllabus topic/mini project.
- Simulate experiments using available Electronic Design Automation Tools like Circuit maker, Tina, Multisim, Electronic work bench etc.

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No.	Title of Books	Author	Publication
1	Electronic Principles with simulation CD	Malvino A.P	MGH, 2009 or latest
2	Electronic Devices and Circuit Theory	Boylestad Robert	Pearson, 2007 or latest
3	Principles of Electronics	Mehta V.K	S. Chand, or latest
4	Electronic Devices and Circuits	Bell David A	Oxford University Press, 2008 or latest
5	Basic Electronics – A text lab manual	Zbar Paul B, Malvino Albert Michael Miller	MGH, latest edition
6	Basic Electronics and Linear Circuits	Kulshreshtha, Bhargava and Gupta	TMH, 2006 or latest

Other Learning Resources

- Electronic Component Data sheets BPB Publications, New Delhi
- Electronics engineering magazines like EFY, Elector etc.

B. List of Major Equipment/Materials

- i. Function Generator
- ii. Multimeter
- iii. D.C. Power Supply
- iv. Variac
- v. Cathode Ray Oscilloscope
- vi. Digital Storage Oscilloscope
- vii. Experimental Trainer Kits, Bread Board, General Purpose PCB

C List of Software/Learning Websites

- i. Electronic Work Bench/MultiSIM
- ii. www.nptel.com
- iii. www.ocw.mit.edu

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. S.N.Sampat**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Gandhinagar
- **Prof.(Smt.) Kundan N. Vaghela**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Ahmedabad
- **Prof. N.B.Shah**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Vadnagar
- **Prof. B.P.Raval**, Senior Lecturer, Department of Electronics and Communication, Government Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal

- **Prof.**(**Mrs.**)**Susan S. Mathew**, Associate Professor, Dept. of Electrical and Electronics Engg.
- **Dr.(Mrs.)Anjali Potnis**, Assistant Professor, Dept. of Electrical and Electronics Engg.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Electronic Networks (Code: 3321102)

Diploma Program in which this course is offered	Semester in which offered
Electronics and Communication Engineering	Second Semester

1. RATIONALE

Electronic networks is a core area, the knowledge of which is essential for electronic engineering diploma holders and they need to assimilate it in order to succeed in the Industry. In this regard, the basic knowledge of various theorems, resonance, filtering and attenuation related to passive electronic components is essential. Understanding of these concepts will be useful to determine the various parameters required to solve various problems and applications. This course has been designed to achieve these aims.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

• Analyse electronic networks in terms of voltage, current, power, attenuation and frequency response.

3. TEACHING & EXAMINATION SCHEME

Teaching Scho (In Hours)	Total Credits	Examination Scheme					
10-		(L+T+P)	Theo	ry Marks	Practica	l Marks	Total Marks
L T	P	C	ESE	PA	ESE	PA	
3 2	2	7	70	30	20	30	150

Note: It is the responsibility of the institute heads that marks for **PA** of theory & **ESE** and **PA** of **practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. DETAILED COURSE CONTENTS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1a. Differentiate between voltage	1.1 Conversion of voltage source to
	source and current source.	Current Source (Ideal and Practical)
Network		and vice versa
Elements	1b. Determine voltage, current and	1.2 Resistors connected in series,
and Network	power relationship for resistors	parallel and in combination
Topology	connected in series, parallel and in combination	1.3 Capacitors connected in series, parallel and in combination
	1c. Determine voltage, current and	1.4 Inductors connected in series,
	power relationship for capacitors	parallel and in combination
	connected in series, parallel and in	1.5 Voltage and Current division
	combination	method
	1d. Determine voltage, current and	1.6 Branch, Node, Loop, Mesh and
	power relationship for capacitors	terms related to network topology
	connected in series, parallel and in	.60
	combination	4
	1e. Analyze the circuit to calculate	
	voltage and current at various points in circuit	
	1f. Describe various terms related to	1.7 Passive and Active network,
	network topology	Linear and Non- linear, Lumped
	1g. Compare various types of	and Distributed , Unilateral and
	networks	Bilateral, Symmetrical and
	1h. Define terms related to	Asymmetrical, Single port and
	impedances of multi-port network	Double port, Three and Four
		terminals
		1.8 Transfer Impedance, Driving point
	26.70	Impedance, Image Impedance and Terminating Impedance, Input and
		Output Impedances
	1i. Describe steps to obtain	1.9 Characteristic Impedance of
	characteristic impedance of	standard T and π networks (Z_{OT}
	standard T and π networks (Z_{OT}	and $Z_{0\pi}$) and relation between them
	and $Z_{O\pi}$)	1.10 T to π and π to T networks
	1j. Describe steps to obtain relation	conversion or Star to Delta and
. 9	between Z_{OT} and $Z_{O\pi}$	Delta to Star conversion
	1k. Describe steps of conversion	
A ~	between T to π networks and vice versa	
Unit- II	2a. Analyse the circuit to Calculate	2.1 Kirchhoff's Voltage and Current
	voltage and current in the given	law(KVL and KCL)
Network	resistive circuits using KCL and	2.2 Mesh Analysis and Nodal Analysis
Theorems	KVL	of Networks
	2b. Analyse the resistive circuits to	2.3 Principle of Duality
	calculate voltage and current using	
	Mesh and nodal analysis method	
	2c. Explain the steps to find the	
	dual of given circuit having R-L-	

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit- III Resonance and Coupled Circuits	2d. Explain the steps to Calculate the current in any branch of the circuit using Superposition Theorem. 2e. Use Superposition Theorem to calculate the current in any branch of the circuit. 2f.Explain the steps to calculate the Vth, Rth and load current in the circuit using Thevenin's Theorem. 2g.Use Thevenin's Theorem to calculate Vth, Rth and load current in the given circuit. 2h. Explain the steps to calculate the load current in the circuit using Norton's Theorem. 2i. Calculate the load current in the given circuit using Norton's Theorem. 2j. Describe the Maximum Power Transfer condition for any given circuit 2k. Define the Reciprocity Theorem 3a Determine Quality factor of a Coil and Capacitor. 3b Analyse the behavior of Series and Parallel resonant circuit using frequency response curve and calculate resonance	2.4 Super Position Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem, Reciprocity Theorem 3.1 Quality factor or Q-factor of coil and capacitor 3.2 Series and parallel resonant circuit, resonance frequency, impedance at resonance, bandwidth and selectivity of series and parallel
	frequency and various parameters of Series and Parallel resonant circuit. 3c.Compare the performance of single tuned and double tuned circuit (without derivation).	resonance circuit. 3.3 Coupled circuit, mutual inductance 3.4 Transformers: Iron core, Air core, single tuned and double tuned air core transformer used in tuned circuit
Unit – IV	4a. Classify various types of attenuators.	4.1 Attenuators, T and π attenuators, Lattice attenuators
Attenuators	4b. Explain relation between decibel	
and Equalizers	and neper 4c. Using the relation N= Is / IR	
-1	obtain the equations of R1 and	
	R2 for Symmetrical T and π types of attenuators offering	
	given amount of	
	attenuation(Kirchhoff's Laws	
	and Mesh analysis)	

Unit	Major Learning Outcomes	Topics and Sub-topics
	4d. Define Lattice attenuator	
		4.2 Series and Shunt amplitude
	equalizers. 4f. Explain series and shunt amplitude	Equalizers 4.3 Bridge T and Lattice Phase
	equalizers and obtain the equations	equalizers
	for power ratio.	equanzers
	4g. Describe bridge T and lattice	
	phase equalizers.	
Unit – V	5a. Classify the various passive filter	5.1 Passive Filters: Constant 'k' and
Filters	circuits.	'm' derived type T and π sections –
	5b. Derive the cut-off frequency	Low Pass, High Pass,
	equations for constant-k type, T and π sections of low Pass and High	5.2 Band pass and band stop filters
	Pass filters	
	5c. Use the pass band equation	1-0
	-1 < Z1 / 4Z2 < 0 to obtain the	4
	equation of cut-off frequency for	
	Constant-k type T & π sections—	(2)
	Low Pass and High Pass filters	
	and calculate fc.	
	5d. Use the equations $R_0^2 = L/C$	
	and the equation for fc to obtain	
	the equations for L and C and	
	calculate values of L and C for	
	given specifications.	
	5e. Describe limitations of	
	constant-k type filters.	
	5f. Use the equation Z_{OT} and $Z_{O\pi}$ to	
	obtain the equation of m in terms	
	of fc and f∞ for m-derived T &	
	π sections – Low Pass and High Pass filters and calculate values	
	of m, L and C for given	
	specifications.	
. 1	5g. Explain band pass and band stop	
	filter using Low pass and high pass	
A	filter.	
	5h. Compare high pass, low pass, band	
IA:	pass and band stop filters.	

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

			Dis	stribution o	of Theory Marks		
Unit	Unit Title	Teaching	R	U	A	Total	
No.		Hours	Level	Level	Level	Marks	
I	Network Elements and Network	08	04	06	00	10	
	Topology	00	04	00	00	10	
II	Network Theorems	10	04	08	08	20	
III	Resonance and Coupled Circuits	08	02	06	04	12	
IV	Attenuators and Equalizers	08	02	06	06	14	
V	Filters	08	02	06	06	14	
	Total	42	14	32	24	70	

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The exercises/practical should be properly designed and implemented with an attempt to develop different types of skills so that students are able to acquire above mentioned competency.

S. No.	Unit No.	Practical/Exercise	Apprx. Hours Required	
1.	II	For a given multisource network, determine the output impedance and voltage and verify it using Thevinin's Theorem	02	
2.	II	For a given multisource network, determine the value of current in the specified branch and verify it using Superposition theorem	02	
3.	II	For a given multisource network, determine the output impedance and voltage and verify it using Norton's Theorem	02	
4.	II	For a given multisource network, determine the output impedance and voltage and verify it using Maximum power transfer theorem.	02	
5.	III	For series resonance circuit, determine the frequency response curve to obtain the resonant frequency, resonant impedance, Bandwidth (BW) and Quality factor for series resonance circuit.	02	
6.	III	For a parallel resonance circuit, determine the frequency response curve to obtain the resonant frequency, resonant impedance, Bandwidth (BW) and Quality factor.		
7.	IV	Build and test T-type, π -type attenuator for given attenuation.	02	
8.	IV	Build and test Lattice attenuator for given attenuation.	02	
9.	IV	Measure Transfer Impedance, Driving point Impedance, Image Impedance and Terminating Impedance, Input and Output Impedances for given two-port network.	04	
10.	V	For the given parameters, build constant k-low pass filter (T and π sections)	02	
11.	V	For the given parameters, build constant k high pass filter (T and π		
12.	V	Obtain the frequency response curve for the given m -derived low pass and high pass filter.	02	
		Total	26	

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- Teacher guided tutorial exercises to solve problems based on all units.
- Implement small circuits on bread board and verify the design.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S.No.	Title of Book	Author	Publication
1.	Network Analysis	Mithal G. K.	Khanna Publication, 2008 or latest edition
2.	Network Analysis and Synthesis	Chakraborti A.	Dhanpat Rai Publication,2009 or latest edition
3.	Networks and Transmission lines	T. Anil Kumar	Pearson Education, 2006 or latest edition
4.	Networks Lines and Fields	Ryder J. D.	Prentice Hall Inc. 2008 or latest edition
5.	Network Analysis	M.E.Van Valkenburg	Prentice Hall Inc. 2011 or latest edition

B. List of Major Test and Measuring Instruments and other components

- i. Breadboard, Experimental boards for study of series and parallel resonance circuits and different types of filters
- ii. Function generator
- iii. Regulated power supply
- iv. Multi-meter
- v. LCR-Q meter

C. List of Learning Websites

- i. http://www.nptel.com
- ii. http://www.allaboutcircuits.com/vol_1/index.html
- iii. http://en.wikipedia.org/wiki/Electrical_network
- iv. http://www.mhhe.com/engcs/electrical/hkd/tutmenu.htm
- v. http://en.wikipedia.org/wiki/Network_analysis_(electrical_circuits)
- Vi. http://www.indianshout.com/tag/circuit-theory-study-material

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- **Prof. R. D. Raghani**, HOD, Dept. of Electronics and Communication, L.E. College of Engineering, Morbi
- **Prof.(Smt.) K. R. Shah**, Sr. Lecturer, Dept. of Electronics and Communication, Government Polytechnic, Ahmedabad
- **Prof. N. R. Merchant**, Sr. Lecturer, Dept. of Electronics and Communication, Government Polytechnic, Ahmedabad
- **Prof. D. R. Bhojani**, HOD, Dept. of Electronics and Communication, Darshan Institute of Engineering and Technology for Diploma Studies, Rajkot

Coordinator & Faculty Members from NITTTR Bhopal

- **Prof.** (Mrs.) Susan S. Mathew, Associate Professor, Dept. of Electrical and Electronics Engg.
- **Dr.(Mrs.) Anjali Potnis**, Assistant Professor, Dept. of Electrical and Electronics Engg.

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM

Course Title: Electronics Workshop (Code: 3321103)

Diploma Programmes in which this course is offered	Semester in which offered
Electronics & Communication Engineering	Second Semester

1. RATIONALE

Students have learned about different electronic components and devices in 'Electronic Components and Practice' course in the First semester. This course of 'Electronics Workshop Practice' is aimed to provide the students with more hands-on experience and also enable them to develop and test simple PCB circuits. Selection of components, wiring, soldering, desoldering, testing and troubleshooting, are some of the basic skills required by industry from any electronics engineering diploma holder. Students also need to develop enough learning confidence to complete entire project work related to various courses in subsequent higher level semesters. Hence, this course is designed to develop these vital skills required by the electronic industry through various laboratory experiences and strategies like mini-projects.

2. COMPETENCY

The course content should be implemented with the aim to develop different types of skills leading to the achievement of the following competency:

• Test self-built electronic circuits comprising of discrete electronic components.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme			Total		Exa	mination S	cheme	
(In Hours)		Credits (L+T+P)			s Practical Marks		Total Marks	
L	T	P	C	ESE	PA	ESE	PA	
0	0	4	4	0	0	40	60	100

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit ESE - End Semester Examination; PA - Progressive Assessment.

Note: It is the responsibility of the institute heads that marks for **PA** of theory & **ESE** and **PA** of **practical** for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. DETAILED COURSE CONTENT

Unit	Major Practical Learning Outcomes	Topics and Sub-topics
Unit – I Electronic Components, Measuring	1a.Identify a particular component from the given group of passive electronic components 1b. Identify the terminals of	1.1 Passive components: Different types of: resistors, inductors, capacitors, potentiometers, Thermistor, Transformer, auto transformer 1.2 Active components: Diode, Zener
Instruments and Tools	active electronic components .	diode, Varactor diode, LED, Photo diode, BJT, Photo transistor, FET, LDR, Solar cell, Photocell, Optocoupler
	1c.Use voltage source. 1d. Use test and measuring instruments.	1.3 Voltage Sources: DC battery (Pencil cell:1.5V, AAA, AA Type, +9V, Rechargeble Cell, Mobile battery) AC power supply, DC power supply 1.4 Measuring Instruments: Different types of Voltmeters, Ammeters, Watt meters, multimeter, LCR-Q meter,
	1d. Use electronic workshop tools for building and wiring electronic circuits with necessary safety	CRO, DSO, Function Generator, Frequency counter 1.5 Electronic Workshop Tools: Bread board, Copper clad laminate sheet, Solder iron, solder-stand, solder-wire, flux, flexible wire, hookup wire, cables, relays, switches, connectors, fuses, Cutter, plier, screwdriver set, wire stripper, de- solder pump, De-solder wick, drilling machine
Unit– II Building, Wiring, Soldering and Testing of Electronic Circuits	2a. Sketch the standard symbols of various active and passive electronic components 2b. Draw the electronic circuits using standard symbols	 2.1 Electronic circuit Drawing Series and Parallel network using Resistors, Capacitors, T-type/π-type attenuator, Circuit diagram for: - forward/reverse biased PN Junction diode Half wave, Full wave and Bridge Rectifier using diode - characteristics of Zener diode/ LED/ Photo diode/LDR - Transistor characteristics in CE/CB configuration - Zener diode as shunt regulator - Transistorized shunt/ series regulators - +5V, -5V, +/-5V dc regulated power supply using IC 78XX / 79XX with

Unit	Major Practical Learning Outcomes	Topics and Sub-topics
Unit III	2b.Build/test and troubleshoot electronic circuits on breadboard 2c.Build/test electronic circuits on general purpose PCB	LED indication - LM317 variable voltage regulator - Clipper/Clamper - Low pass filter, High pass filter, Band pass filter, Band elimination filter - Light operated Relay - Transistorized touch control switch - Rain drop detector 2.2 Electronic circuit on bread board 2.3 Soldering/desoldering, electronic circuit on general purpose PCB
Unit– III Use of Data sheets for Component Selection and Specification	3a. Find the specification of electronic component from data sheet/data manual. 3b. Select appropriate component for given circuit application. 3c. Select specification of Surface Mount Device (SMD) components as required.	 3.1 Manufacturer's Datasheet of: Diodes IN4001 to 07, IN4148; 2N5402, 2N5408, BY127 Zener Diode, Photo diode, LED, Varactor diode, Seven segment LED Transistors BC107, BC177, BC547/548, SL100, SK100, AC127/128, BF194, TIP122, Photo transistor voltage regulator IC78XX, 79XX, LM317 Packages of various SMD components: Resistor, Capacitor, Inductor, Diode-LL4148, SM4007, Chip transistor, Chip Darlington transistor, Bridge rectifier
Unit – IV Schematic, Layout and Tracing of Electronic Circuits Unit – V	 4a. Create PCB layout manually. 4b. Create schematic and layout of given electronic circuit using any Simple PCB design software. 4c. Trace circuit from given PCB layout on the PCB. 5a. Fabricate PCB & build the 	4.1 Manually Prepare PCB layout on graph paper 4.2 PCB design software 4.3 PCB layout - Component side and copper side 4.4 Tracing for PCB Fabrication 4.5 Tracing of circuit on PCB
Mini Project	sa. Fabricate PCB & build the given circuit on the PCB. 5b. Test the assembled circuit on PCB. 5c. Prepare project report in proper format.	5.1 Fabrication of PCB, component mounting, Soldering, testing & troubleshooting of circuits on PCB

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Unit			Distr	ibution of T	heory Ma	arks
No.	Unit Title	Teaching	R	U	A	Tota
		Hours	Level	Level	Level	l
I	Electronic Components,					
	Measuring Instruments and Tools					
II	Building, Wiring, Soldering and					
	Testing of Electronics Circuit					
III	Use of Data sheets for		NI_4			
	Component Selection and		Not	applicable		
	Specification					~
IV	Schematic, Layout and Tracing					
	of Electronic Circuits					
V	Mini Project					

Legends: R = Remember; U = Understand; A = Application and above levels (Revised Bloom's taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICALS

The practical exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the above mentioned expected competency. In some of the practical exercises from S.No.8 onwards, the identified list is for for guideline only. Other necessary electronic tools, components ,circuits etc. can also be included by considering contents of current semester subjects like 'Electronic Components & Practice' (ECP), 'Electronic Circuits and Applications' (ECA) or 'Electronic Networks' (EN).

S. No.	Unit No.	Practical Exercises	
			Required
1	I & II	Draw symbols of various electronic components on drawing sheets.	02
2	I & II	Draw the circuit diagrams of various (Simple to Complex) electronic	04
	\wedge	circuits on drawing sheets.	
3	I	Compare the values with the measured by using measuring	04
		instruments like Digital Multimeter, LCR-Q Meter: Resistors	
FA		inductors, capacitors, potentiometers, Trimmers, Thermistor,	
		Transformer, auto transformer.	
4	I	Identify the terminals of the following components: Diode, Zener	
		diode, Varactor diode, LED, Photo diode, BJT, Photo transistor,	
		FET, LDR, Solar cell, Photocell, Opto-coupler,7 Segment	
		Display, Relays	
5	I	Use the following instruments to measure the parameters of any	02
		electronic circuit: Function Generator, Frequency counter,	
		CRO, and DSO, with all safety precautions.	
6	I	Provide some exercises so that the following electronics hardware	02
		tools and materials are learned to be used by the students (as a	

S. No.	Unit No.	Practical Exercises	Approx. Hrs Required
		guideline only):	
		(a) Bread board	
		(b) Copper clad laminate sheet	
		(c) Solder iron, solder-stand	
		(d) Solder-wire, flux	
		(e) Flexible wire	
		(f) Hookup wire	
		(g) Cutter	
		(h) Nose plier	
		(i) Screwdriver set	
		(j) Wire stripper	
		(k) De-solder pump	-
		(l) De-solder wick	
	**	(m) Drilling machine.	0.5
7	II	Sketch, mount and test at least six from following electronic circuit	06
		on bread board (Circuits given as a guideline only):	
		(a) T type attenuator	
		(b) π-type attenuator	
		(c) Forward/reverse biased PN Junction diode	
		(d) Zener diode as shunt regulator	
		(e) Opto coupler using LED & Photo diode	
		(f) Half wave Rectifier, Full wave & Bridge rectifier	
		(g) Light operated relay	
		(h) Diode clipper	
		(i) Diode clamper	
		 (j) Transistorized series regulator (k) +/- 5V Regulated power supply with LED indication 	
		 (k) +/- 5V Regulated power supply with LED indication (l) Low pass filter, High pass filter 	
		(m) Band pass filter, Band elimination filter	
		(n) Variable power supply using LM317.	
8	II	Sketch, mount, wire, solder and test at least six from electronic	06
0	11	circuits (mentioned in S.No. 9 above) on general purpose board.	00
9	II	De-solder given circuit(s) from general purpose printed circuit board.	02
10	III	Find Specifications and package of following components from	04
10	111	Datasheet. (as a guideline only):	04
		(a) Diodes IN4001 to 1N4007, IN4148, 2N5402, 2N5408,BY127	
	, 3	(a) Diodes in4001 to in4007, in4146, 2N3402, 2N3408,B 1127 (b) Zener Diode - 5V6	
	W.	(c) Photo diode - BPW10	
		(d) LED - LED 55	
-		(e) Varactor diode	
7.0	. 7	(f) Seven segment LED	
· ·		(g) Transistors BC107, BC177, BC547/548,	
		(h) Transistors SL100, SK100, AC127/128, BF194, TIP122	
		(i) IC 78XX, 79XX	
		(j) LM317	
		(k) SMD components: Resistor, Capacitor, Inductor & Diode-	
		LL4148, SM4007, Chip transistor, Chip Darlington transistor,	
		Bridge rectifier.	
11	4	1. Prepare layout (Manually) of a given circuit on paper.	06
		2. Create schematic and layout of given electronic circuit using any	
		PCB design software:	

S.	Unit			
No.	No.		Hrs Required	
		 (a) +/-12V Regulated Power supply Using 7812 & 7912 (b) Light operated Relay (c) TV remote checker using transistor, IR photo diode, red LED (d) Touch switch using transistor (e) Door safety using Reed and magnet (f) Water level alarm using single transistor (g) Opaque Object sensing alarm using LDR, transistor & Buzzer 	Required	
12	IV	Trace electronic circuit from the given PCB layout of an electronic circuit.	02	
13	V	Mini project 1 Create schematic, layout and fabricate PCB for given electronic circuit and prepare brief report on it.	06	
14	V	Mini project 2 Build experiment board (at least one) from following on Hylem sheet and wooden casing in group of five students maximum. (as a guideline only): a) PN junction diode characteristics b) Zener diode characteristics c) LED characteristics d) Half wave, full wave, bridge rectifiers e) Transistor characteristics f) LDR characteristics g) +/-5V dc regulated power supply using LM7805 &LM7905.	06	
15	V	Mini project 3 Build extension board with four 5-pin socket, four switches, fuse and indicating lamp. (This is for guideline only; faculty can allot other required electrical wiring related project).	04	
		Total	58	

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- Prepare charts related to the first year electronic courses in a group of maximum 3 students.
- Develop at least two mini projects and their brief report
- Explore at least one circuit using diodes and transistors from internet
- Search the data sheet on web for the given component as literature survey
- Prepare Presentation (PPT) on their project work or on any advanced topic.
- Prepare budget for electrical wiring/system for any given house.

8. SUGGESTED LEARNING RESOURCES

A. List of Books

S. No.	Title of Book	Author	Publication
1	Printed Circuit Boards: Design and Technology	Bossart	TMH, 2008 or latest edition
2	Build Your Own Printed Circuit Board	Al Williams	Mc GrawHill, 2003 or latest edition

S. No.	Title of Book	Author	Publication
3	Making Printed Circuit Boards	Jan Axelsen	Mc GrawHill, 1993 or latest edition
4	Modern World Transistor Data & Its Equivalent	Lotia, M.	B P B, 2008
5	Zener Diodes & Their Application	Mishra, T.R	B P B, 2003
6	Electronic Formulas, Tables Symbols	Sharma, M.C	B P B, 2008
7	Everyday Electronics Data Book	Mike Tooley	B P B, 2011
8	Hobby Electronics Project Special	BPB	B P B, 2011

B. List of Major Equipment/ Instrument:

- i. Multimeter, CRO, DC Power supply, Function generator, LCR Q meter.
- ii. Drilling Machine with drill bits
- iii. Solder iron, Solder-stand, De-soldering pump
- iv. Cutter, Nose plier, screw driver set, Wire stipper, Desolder wick, Flux, Solder wire, Hook up wire, Flexible wire, Hylem board
- v. Bread board, General purpose Copper clad laminate sheet

C. List of Software/Learning Websites

- i. http://eecs.vanderbilt.edu/courses/ee213/Breadboard.htm
- ii. http://eecs.vanderbilt.edu/courses/ee213/Breadboard.htm
- iii. http://wiring.org.co/learning/tutorials/breadboard/index.html
- iv. http://www.kpsec.freeuk.com
- v. http://courses.engr.illinois.edu/ece343/breadboard.htm
- vi. http://library.thinkquest.org/16497/projects/index.html
- vii. http://www.technologystudent.com/elec1/tranbrd1.htm
- viii. http://circuiteasy.com/
- ix. www.expresspcb.com/expresspcbhtm/download.htm
- x. www.freepcb.com/
- xi. http://www.circuitstoday.com/simple-electronics-projects-and-circuits
- xii. http://www.buildcircuit.com/5-beginners-projects-that-work-in-the-first-attempt/

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Prof. S. J. Chauhan, HOD (EC), Government Polytechnic, Rajkot
- **Prof. T. P. Chanpura**, Lecturer EC, Government Polytechnic, Ahmedabad
- Prof. S. G. Valvi, Lecturer EC, Government Polytechnic, Palanpur
- **Prof. J. A. Patel**, Lecturer EC, Vallabh Buddhi Polytechnic, Navsari

Coordinator & Faculty Members from NITTTR Bhopal

- **Dr. Joshua Earnest**, Professor and Head, Dept. of Electrical and Electronics Engg.
- **Dr.(Mrs.) Anjali Potnis**, Assistant Professor, Dept. of Electrical and Electronics Engg.